1. MOE Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Changsha 410083, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
LIUB, KONGH, WUQ H, et al. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence[J]. Ore Geology Reviews, 2022, 143: 104764.
MEINERTL D, DIPPLEG M, NICOLESCUS. World skarn deposits[J]. Economic Geology, 2005, 100th Anniversary Volume: 299-336.
[12]
LIW S, NIP, PANJ Y, et al. Fluid inclusion characteristics as an indicator for tungsten mineralization in the MesozoicYaogangxian tungsten deposit, central Nanling district, South China[J]. Journal of Geochemical Exploration, 2018, 192: 1-17.
[13]
BRUGGERJ, BETTIOLAA, COSTAS, et al. Mapping REE distribution in scheelite using luminescence[J]. Mineralogical Magazine, 2000, 64(5): 891-903.
[14]
BRUGGERJ, ETSCHMANNB, POWNCEBYM, et al. Oxidation state of europium in scheelite: tracking fluid-rock interaction in gold deposits[J]. Chemical Geology, 2008, 257(1/2): 26-33.
[15]
LUH Z. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 2003, 98(5): 955-974.
PALMERM C, SCOTTJ M, LUOY, et al. In-situ scheelite LASS-ICPMS reconnaissance Sm-Nd isotope characterisation and prospects for dating[J]. Journal of Geochemical Exploration, 2021, 224: 106760.
[18]
SCIUBAM, BEAUDOING, GRZELAD, et al. Trace element composition of scheelite in orogenic gold deposits[J]. Mineralium Deposita, 2020, 55(6): 1149-1172.
[19]
SOLOVIEVS G, KRYAZHEVS G. Tungsten mineralization in the Tien Shan Gold Belt: geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, western Uzbekistan[J]. Ore Geology Reviews, 2018, 101: 700-724.
[20]
SUS Q, QINK Z, LIG M, et al. Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit, South China[J]. American Mineralogist, 2021, 106(9): 1503-1519.
[21]
HSUL C, GALLIP E. Origin of the scheelite-powellite series of minerals[J]. Economic Geology, 1973, 68(5): 681-696.
CRISSR E, TAYLORH P Jr. Chapter 11. METEORIC-HYDROTHERMAL SYSTEMS[M]// VALLEYJ W, TAYLORH P, O’NEILJ R. Stable isotopes in high temperature geological processes. Berlin: De Gruyter, 1986: 373-424.
[24]
BINDEMANI N, O’NEILJ. Earth’s earliest hydrosphere recorded by the oldest hydrothermally-altered oceanic crust: triple oxygen and hydrogen isotopes in the 4.3-3.8 Ga Nuvvuagittuq belt, Canada[J]. Earth and Planetary Science Letters, 2022, 586: 117539.
[25]
LIG, YANGR, XUZ, et al. Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering[J]. Earth and Planetary Science Letters, 2022, 578: 117292.
[26]
LIL, WEIS W, SHERWOODLOLLAR B, et al. In situ oxidation of sulfide minerals supports widespread sulfate reducing bacteria in the deep subsurface of the Witwatersrand Basin (South Africa): insights from multiple sulfur and oxygen isotopes[J]. Earth and Planetary Science Letters, 2022, 577: 117247.
[27]
NGUYENT H, NEVOLKOP A, PHAMT D, et al. Age and genesis of the W-Bi-Cu-F (Au) Nui Phao deposit, Northeast Vietnam: constrains from U-Pb and Ar-Ar geochronology, fluid inclusions study, S-O isotope systematic and scheelite geochemistry[J]. Ore Geology Reviews, 2020, 123: 103578.
[28]
BETTENCOURTJ S, LEITEW B Jr, GORAIEBC L, et al. Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics[J]. Lithosphere, 2005, 80(1/2/3/4): 363-386.
[29]
GAOS, ZOUX Y, HOFSTRAA H, et al. Trace elements in quartz: insights into source and fluid evolution in magmatic-hydrothermal systems[J]. Economic Geology, 2022, 117(6): 1415-1428.
[30]
POULINR S. A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotope in scheelite: application towards discriminating among differing ore-deposit systems[D]. Sudbury: Laurentian University, 2016.
[31]
GHOSHU, UPADHYAYD. The retrograde evolution of F-rich skarns: clues from major and trace element chemistry of garnet, scheelite, and vesuvianite from the Belka Pahar wollastonite deposit, India[J]. Lithosphere, 2022, 422/423: 106750.
[32]
MIRANDAA C R, BEAUDOING, ROTTIERB. Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration[J]. Mineralium Deposita, 2022, 57(8): 1469-1497.
[33]
VANDERAUWERA J, ANDREL. Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources: evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy)[J]. Contributions to Mineralogy and Petrology, 1991, 106(3): 325-339.
[34]
GALLAGHERV. Geological and isotope studies of microtonalite-hosted W-Sn mineralization in SE Ireland[J]. Mineralium Deposita, 1989, 24(1): 19-28.
[35]
YUVANJ. Fluid inclusion and oxygen isotope studies of high-grade quartz-scheelite veins, Cantung mine, Northwest Territories, Canada: products of a late-stage magmatic-hydrothermal event[D]. Columbia: University of Missouri, 2006.
WESOLOWSKID, OHMOTOH. Calculated oxygen isotope fractionation factors between water and the minerals scheelite and powellite[J]. Economic Geology, 1986, 81(2): 471-477.
[38]
LIZ X, LIX H. Formation of the 1300-km-wide intracontinental orogen andpostorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179.
CHENY X, LIH, SUNW D, et al. Generation of Late Mesozoic Qianlishan A 2-type granite in Nanling Range, South China: implications for Shizhuyuan W-Sn mineralization and tectonic evolution[J]. Lithosphere, 2016, 266/267: 435-452.
JIANGH, LIUB, KONGH, et al. In situ geochemistry and Sr-O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W (-Sn) deposit, South China[J]. Ore Geology Reviews, 2022, 149: 105066.
[50]
LIUB, LIH, LIUY G, et al. Crystallization processes and genesis of scheelite in a quartz vein-type W deposit (Xianghuapu, South China)[J]. Chemical Geology, 2022, 613: 121142.
WUK Y, LIUB, WUQ H, et al. Trace element geochemistry, oxygen isotope and U-Pb geochronology of multistage scheelite: implications for W-mineralization and fluid evolution of Shizhuyuan W-Sn deposit, South China[J]. Journal of Geochemical Exploration, 2023, 248: 107192.
[55]
LIUB, WUQ H, KONGH, et al. Tungsten mineralization process and oxygen fugacity evolution in the Weijia W deposit, South China: constraints from the microstructures, geochemistry, and oxygen isotopes of scheelite, garnet, and calcite[J]. Ore Geology Reviews, 2022, 146: 104952.
[56]
KANGF, LIUB, LIH, et al. Multistage W-Sn metallogenic processes in the Xitian ore field, South China: evolution from skarn-type to vein-type mineralization[J]. Ore Geology Reviews, 2023, 158: 105495.
[57]
XIAOM, QIUH N, CAIY, et al. Progressively released gases from fluid inclusions reveal new insights on W-Sn mineralization of the Yaogangxian tungsten deposit, South China[J]. Ore Geology Reviews, 2021, 138: 104353.
[58]
BRUGGERJ, LAHAYEY, COSTAS, et al. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, western Australia)[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 251-264.
[59]
GHADERIM, PALINJ M, CAMPBELLI H, et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, western Australia[J]. Economic Geology, 1999, 94(3): 423-437.
ZHUY N, PENGJ T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J]. Ore Geology Reviews, 2015, 65(P1): 55-69.