HUGGETTJ, CUADROSJ, GALEA S, et al. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain[J]. Applied Clay Science, 2016, 132/133: 296-312.
[2]
YANGL L, ZHUG Y, LIX W, et al. Influence of crystal nucleus and lattice defects on dolomite growth: geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587(1): 120631.
[3]
WANGX Y. Equilibrium between dolomitization and dedolomitization of a global set of surface water samples: a new theoretical insight on the dolomite inorganic formation mechanism[J]. Marine Chemistry, 2021, 235: 104017.
[4]
MCKENZIEJ A. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study[J]. Journal of Geology, 1981, 89(2): 185-198.
[5]
MITCHELLJ T, LANDL S, MISERD E. Modern marine dolomite cement in a North Jamaican fringing reef[J]. Geology, 1987, 15(6): 557-560.
SÁNCHEZ-ROMÁNM, MCKENZIEJ A, DELUCA REBELLO WAGENER A, et al. Experimentally determined biomediated Sr partition coefficient for dolomite: significance and implication for natural dolomite[J]. Geochimica et Cosmochineca Acta, 2011, 75(3): 887-904
HSUK J, SIEGENTHALERC. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25.
[12]
FRIEDMANG M, SANDERSJ E. Chapter 6 origin and occurrence of dolostones[J]. Developments in Sedimentology, 1967, 9: 267-348.
[13]
WARRENJ. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
[14]
ADAMSJ E, RHODESM L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[15]
MACHELH G. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society of London Special Publications, 2004, 235(1): 7-63.
[16]
MATTESB W, MOUNTJOYE W. Burial dolomitization of the Upper Devonian miette buildup, Jasper National Park, Alberta[M]// ZENGERD H, DUNHAMJ B, ETHINGTONR L. Concepts and models of dolomitization. London: Society for Sedimentary Geology, 1980: 259-297.
[17]
WIERZBICKIR, DRAVISJ J, AL-AASMI, et al. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke Reservoir, Nova Scotia, Canada[J]. AAPG Bulletin, 2006, 90(11): 1843-1861.
[18]
MACHELG H, LONNEEJ. Hydrothermal dolomite: a product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152(3/4): 163-171.
[19]
ANDERSONG M, MACQUEENR W. Mississippi valley -type lead-zinc deposits[J]. Geoscience Reprint Series: Ore Deposit Models, 1987, 3(1): 79-90.
[20]
CERVATOC. Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the southern Alps (Italy): relation to tectonics and volcanism[J]. Geology, 1990, 18(5): 458.
[21]
LUCZAJJ A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsinarch: a case for hydrothermal diagenesis[J]. Bulletin of the American Association of Petroleum Geologists, 2006, 90(11): 1719-1738.
BADIOZAMANIK. The Dorag dolomitization model: application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Petrology, 1973, 43(4): 965-984.
MELIML A, SWARTP K, EBERLIG P. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas[J]. Journal of Sedimentary Research, 2004, 74(6): 904-913.
FUQ L, HUS Y, XUZ H, et al. Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi-Gaoshiti Area, Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2020, 117: 104318.
LIUD, CAIC F, HUY J, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123(1): 104752.
WANGY, SHIZ J, QINGH R, et al. Petrological characteristics, geochemical characteristics, and dolomite model of the Lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 202(1): 108432.
[43]
CHAKRABARTIR, MONDALS, JACOBSONA D, et al. Review of techniques, challenges, and new developments for calcium isotope ratio measurements[J]. Chemical Geology, 2021, 581: 120398.
[44]
GUSSONEN, BÖHMF, EISENHAUERA, et al. Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4485-4494.
[45]
DEPAOLOD J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1039-1056.
[46]
FANTLEM S, TIPPERE T. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177.
[47]
SUNJ, ZHUX K, BELSHAWN S, et al. Ca isotope systematics of carbonatites: insights into carbonatite source and evolution[J]. Geochemical Perspectives Letters, 2021, 17: 11-15.
LIUF, ZHANGZ F, LIX, et al. A practical guide to the double-spike technique for calcium isotope measurements by thermal ionization mass spectrometry (TIMS)[J]. International Journal of Mass Spectrometry, 2020, 450(4): 116307.
[59]
LIUF, ZHANGZ F, ZHANGZ K, et al. Ca isotopic compositions of zoned granitoid intrusion: implications for the emplacement and evolution of magma bodies[J]. Geochimica et Cosmochimica Acta, 2022, 326(1): 149-165.
[60]
JÁNV, DAVINA, KAREMA, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1998, 161(1/2/3): 59-88.
MARRIOTTC S, HENDERSONG M, BELSHAWN S, et al. Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate[J]. Earth and Planetary Science Letters, 2004, 222(2): 615-624.
[64]
GUSSONEN, AHMA S C, LAUK V, et al. Calcium isotopes in deep time: potential and limitations[J]. Chemical Geology, 2020, 544: 119601.
[65]
WIEGANDB, CHADWICKO, VITOUSEKP, et al. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii[J]. Geopyscial Research Letters, 2005, 32(11): L11404.
[66]
GUSSONEN, EISENHAUERA, HEUSERA, et al. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1375-1382.
[67]
LEMARCHANDD, WASSERBURGG J, PAPANASTASSIOUD A. Rate-controlled calcium isotope fractionation in synthetic calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4665-4678.
[68]
FANTLEM S, DEPAOLOD J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2524-2546.
[69]
BLÄTTLERC L, HONGW L, KIRSIMÄEK, et al. Small calcium isotope fractionation at slow precipitation rates in methane seep authigenic carbonates[J]. Geochimica et Cosmochimica Acta, 2021, 298: 227-239.
[70]
NIELSENL C, DEPAOLOD J, DE YOREOJ J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation[J]. Geochimica et Cosmochimica Acta, 2012, 86: 166-181.
[71]
SONGY H, LIY H, WANGW Z, et al. First-principles investigation of the concentration effect on equilibrium fractionation of Ca isotopes in forsterite[J]. Acta Geochimica, 2019, 38(4): 497-507.
[72]
WANGW Z, QINT, ZHOUC, et al. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: insights from first-principles calculations[J]. Geochimica et Cosmochimica Acta, 2017, 208: 185-197.
SITEPUH. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy[J]. Powder Diffraction, 2009, 24(4): 315-326.
[75]
STEINFINKH, SANSF J. Refinement of the crystal structure of dolomite[J]. American Mineralogist, 1959, 44(5/6): 679-682.
[76]
AHMA S C, BJERRUMC J, BLÄTTLERC L, et al. Quantifying early marine diagenesis in shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 236: 140-159.
[77]
KRAMERP A, SWARTP K, DECARLO E H, et al. Overview of interstitial fluid and sediment geochemistry, Sites 1003-1007 (Bahamas Transect)[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 168(8): 179-195.
[78]
SWARTP K, EBERLIG P, MALONEM J, et al. The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystallization in the margin of Great Bahama Bank[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 166(8): 91-98.
[79]
HIGGINSJ A, BLÄTTLERC L, LUNDSTROME A, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 220: 512-534.
[80]
WARRENJ K. Evaporites: a geological compendium[M]. Berlin: Springer, 2016.
[81]
WOODW W, SANFORDW E, AL HABSHIA R S. Source of solutes to the coastal sabkha of Abu Dhabi[J]. Geological Society of America Bulletin, 2002, 114(3): 259-268.
[82]
WOODW W, SANFORDW E, FRAPES K. Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat[J]. Chemical Geology, 2005, 215(1/2/3/4): 361-372.
[83]
CHANGB, LIC, LIUD, et al. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014.