CAMPBELLE T, TERHALB M, VUILLOTC. Roads towards fault-tolerant universal quantum computation[J]. Nature, 2017, 549(7671): 172-179.
[11]
LUOY H, ZHONGH S, ERHARDM, et al. Quantum teleportation in high dimensions[J]. Physical Review Letters, 2019, 123(7): 070505.
[12]
RAOK B. Computer systems architecture vs quantum computer[C]//Proceedings of International Conference on Intelligent Computing and Control Systems (ICICCS). Madurai: Vaigai College of Engineering, 2017, 8250619: 1018-1023.
[13]
CHAMBERLANDC, NOHK, ARRANGOIZ-ARRIOLAP, et al. Building a fault-tolerant quantum computer using concatenated cat codes[J]. PRX Quantum, 2022, 3(1): 010329.
[14]
PANETI, FLURYJ, BIANCALER, et al. Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space[J]. Surveys in Geophysics, 2013, 34(2): 141-163.
[15]
JANVIERC, MÉNORETV, DESRUELLEB, et al. Compact differential gravimeter at the quantum projection-noise limit[J]. Physical Review A, 2022, 105(2): 022801.
[16]
LOPEZCFA, LAMATAL, RETAMALJC, et al. Multiqubit and multilevel quantum reinforcement learning with quantum technologies[J]. Plos One, 2018, 13(7): 1-25.
[17]
REBENTROSTP, MOHSENIM, LLOYDS. Quantum support vector machine for big data classification[J]. Physical Review Letters, 2014, 113(13): 130503.
[18]
LIZ K, CHAIZ H, GUOY H, et al. Resonant quantum principal component analysis[J]. Science Advances, 2021, 7(34): eabg2589.
[19]
KAKS C. Quantum neural computing[M]//HAWKES P W. Advances in imaging and electron physics. Amsterdam: Elsevier, 1995: 259-313.
PEARCEJ A, CANNJ R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
UEKIK, HINOH, KUWATANIT. Geochemical discrimination and characteristics of magmatic tectonic settings: a machine-learning-based approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1327-1347.
[36]
HANS, LIM C, RENQ B. Discriminating among tectonic settings of spinel based on multiple machine learning algorithms[J]. Big Earth Data, 2019, 3(1): 67-82.
[37]
RENQ B, LIM C, HANS, et al. Basalt tectonic discrimination using combined machine learning approach[J]. Minerals, 2019, 9(6): 376.
JENKINSB K, TANGUAYA R. Handbook of neural computing and neural networks[M]. Boston: MIT Press, 1995.
[41]
FREDRICKM. Artificial neural network-based decision support systems in manufacturing processes: a systematic literature review[J]. Computers and Industrial Engineering, 2022, 165: 107964.
JESWALS K, CHAKRAVERTYS. Recent developments and applications in quantum neural network: a review[J]. Archives of Computational Methods in Engineering, 2019, 26(4): 793-807.
[44]
KILLORANN, BROMLEYT R, ARRAZOLAJ M, et al. Continuous-variable quantum neural networks[J]. Physical Review Research, 2019, 1(3): 033063.
[45]
DIVINCENZOD P. Quantum gates and circuits[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1969): 261-276.
[46]
NORDHAUSENK. Ensemble methods: foundations and algorithms by Zhi-Hua Zhou[J]. International Statistical Review, 2013, 81(3): 470.
[47]
ZHANGJ W, LIM C, HANS, et al. Estimation of seismic wave incident angle using vibration response data and stacking ensemble algorithm[J]. Computers and Geotechnics, 2021, 137(5): 104255.