Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization
SONGX Y, LIX R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment[J]. Mineralium Deposita, 2009, 44(3): 303-327.
[2]
ZHANGZ C, MAOJ W, CHAIF M, et al. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, Northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104: 185-203.
[3]
LIC S, ZHANGM J, FUP E, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47(1): 51-67.
[4]
MAOY J, QINK Z, LIC S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200: 111-125.
[5]
HANB F, JIJ Q, SONGB, et al. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 2004, 49(22): 2424-2429.
[6]
MAOY J, QINK Z, LIC S, et al. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China[J]. Mineralium Deposita, 2015, 50(1): 65-82.
[7]
PENGR, ZHAIY, LIC, et al. The erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting[J]. Economic Geology, 2013, 108(8): 1879-1888.
[8]
WUF Y, WILDES A, ZHANGG L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, 2004, 23: 781-797.
[9]
LÜL S, MAOJ W, LIH B, et al. Pyrrhotite Re-Os andSHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews, 2011, 43(1): 106-119.
[10]
WEIB, WANGC, LIC S, et al. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, northeastern China[J]. Economic Geology, 2013, 108: 1813-1831.
[11]
HAOL B, ZHAOX Y, BOORDERH D, et al. Origin of PGE depletion of Triassic magmatic Cu-Ni sulfide deposits in the central-southern area of Jilin Province, NE China[J]. Ore Geology Reviews, 2014b, 63: 226-237.
[12]
HAOL B, WEIQ Q, ZHAOY Y, et al. Newly identified Middle-Late Permian mafic-ultramafic intrusions in the southeastern margin of the Central Asian Orogenic Belt: petrogenesis and its implications[J]. Geochemical Journal, 2015, 49(2): 157-173.
JAHNB M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Journal of the Geological Society, 2004, 226: 73-100.
HANC M, XIAOW J, ZHAOG C, et al. Re-Os isotopic age of the Hongqiling Cu-Ni sulfide deposit in Jilin Province, NE China and its geological significance[J]. Resource Geology, 2014, 64(3): 247-261.
[17]
DICKH J B, BULLENT. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.
[18]
BARNESS J, ROEDERP L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42(12): 2279-2302.
[19]
DOWNESH, REICHOWM K, MASONP R D, et al. Mantle domains in the lithosphere beneath the French Massif Central: trace element and isotopic evidence from mantle clinopyroxenes[J]. Chemical Geology, 2003, 200(1/2): 71-87.
[20]
DRIOUCHY, BÉZIATD, GRÉGOIREM, et al. Clinopyroxene trace element compositions of cumulate mafic rocks and basalts from the Hercynian Moroccan Central Meseta: petrogenetic implications[J]. Journal of African Earth Sciences, 2010, 56(2/3): 97-106.
[21]
LIUY G, LÜX B, YANGL, et al. Metallogeny of the Poyi magmatic Cu-Ni deposit: revelation from the contrast of PGE and olivine composition with other Cu-Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 2015, 19: 613-620.
[22]
LIUY G, LIW Y, LÜX B, et al. Sulfide saturation mechanism of the Poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 2017, 91: 419-431.
[23]
LIIPOJ, VUOLLOJ, NYKÄNENV, et al. Chromites from the Early Proterozoic Outokumpu-Jormua Ophiolite Belt: a comparison with chromites from Mesozoic ophiolites[J]. Lithos, 1995, 36(1): 15-27.
[24]
ROEDERP L, EMSLIERF. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289.
WINDLEYB F, ALEXEIEVD, XIAOW J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47.
[27]
KRÖNERA, KOVACHV, BELOUSOVAE, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125.
[28]
XIAOW J, WINDLEYB F, SUNS, et al. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
[29]
LIUY J, LIW M, FENGZ Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148.
[30]
WUF Y, SUNDY, GEW C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
[31]
WUF Y, ZHAOG C, SUND Y, et al. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 542-556.
[32]
WUF Y, SUND Y, LIH M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.
LIUY S, HUZ C, GAOS, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
PAGEP, BARNESS J. Using trace elements in chromites to constrain the origin of podiform chromitites in the thetford mines ophiolite, Quebec, Canada[J]. Economic Geology, 2009, 104(7): 997-1018.
[38]
YAOS. Chemical composition of chromites from ultramafc rocks: application to mineral exploration and petrogenesis[D]. Sydney: Macquarie University, 1999.
[39]
MCDONOUGHW F, SUNS S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[40]
SUNT, QIANZ Z, DENGY F, et al. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China[J]. Economic Geology, 2013, 108(8): 1849-1864.
[41]
XUES C, QINK Z, LIC S, et al. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the Northeast rim of the Tarim Craton, western China[J]. Economic Geology, 2016, 111(6): 1465-1484.
[42]
LIC S, THAKURTAJ, RIPLEYE M. Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska[J]. Mineralogy and Petrology, 2012, 104(3): 147-153.
[43]
SOBOLEVA V, HOFMANNA W, KUZMIND V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823): 412-417.
[44]
MORIMOTON. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76.
[45]
SUB X, QINK Z, SAKYIP A, et al. Occurrence of an Alaskan-type complex in the middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies[J]. International Geology Review, 2012, 54(3): 249-269.
[46]
KAYS M, SNEDDENW T, FOSTERB P, et al. Upper mantle and crustal fragments in the Ithaca kimberlites[J]. The Journal of Geology, 1983, 91(3): 277-290.
[47]
LEAKEB E. Nomenclature of amphiboles[J]. Mineralogical Magazine, 1978, 42(324): 533-563.
[48]
GODELB, BARNESS J, MAIERW D. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: an example from the lower and lower critical zones of the Bushveld Complex, South-Africa[J]. Lithos, 2011, 125(1/2): 537-552.
[49]
RIPLEYE M, LIC S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58.
[50]
HOFMANNA W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314.
[51]
PEARCEJ A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1): 14-48.
[52]
PELTONENP. Petrogenesis of ultramafic rocks in the Vammala nickel belt: implications for crustal evolution of the Early Proterozoic Svecofennian arc terrane[J]. Lithos, 1995, 34(4): 253-274.
FOSTERJ G, LAMBERTD D, FRICKL R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 1996, 382: 703-706.
[55]
MAURELC, MAURELP. Etude experimentale de la distribution de l’aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: teneur en chrome des spinelles[J]. Bulletin de Mineralogie, 1982, 105: 197-202.
[56]
KELEMENP B. Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite[J]. Journal of Petrology, 1990, 31(1): 51-98.
[57]
WANGJ, HATTORIK H, KILIANR, et al. Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fo2 by slab-melt[J]. Contributions to Mineralogy and Petrology, 2007,153:607-624.
[58]
WANGJ, HATTORIK H, STERNC R. Metasomatic origin of garnet orthopyroxenites in the subcontinental lithospheric mantle underlying Pali Aike volcanic field, southern South America[J]. Mineralogy and Petrology, 2008, 94(3): 243-258.
[59]
ALDANMAZE, PEARCEJ A, THIRLWALLM F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
SONGX Y, KEAYSR R, ZHOUM F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424.
[62]
WANGC Y, ZHOUM F. Genesis of the Permian baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China[J]. Mineralium Deposita, 2006, 41(8): 771-783.
[63]
NALDREETA J. Foundamentals of magmatic sulfide deposits[J]. Society of Economic Geology, Special Publication, 2011, 17: 1-26.
[64]
BARNESS J, TANGZ L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China[J]. Economic Geology, 1999, 94(3): 343-356.
[65]
KEAYSR R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34(1): 1-18.
[66]
FLEETM E, CHRYSSOULISS L, STONEW E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115(1): 36-44.
[67]
ZHOUM F, MICHAELLESHER C, YANGZ X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian Orogenic Belt[J]. Chemical Geology, 2004, 209(3/4): 233-257.
[68]
PIRAJNOF, MAOJ W, ZHANGZ C, et al. The association of mafic ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183.
[69]
LIUY G, LÜX B, WUC M, et al. The migration of Tarim plume magma toward the Northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J] Ore Geology Reviews, 2016, 72: 538-545.
[70]
HANC M, XIAOW J, ZHAOG C, et al. Re-Os dating of the Kalatongke Cu-Ni deposit, Altay Shan, NW China, and resulting geodynamic implications[J]. Ore Geology Reviews, 2007, 32(1/2): 452-468.
[71]
XIAOW J, WINDLEYB F, YUANC, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3): 221-270.
[72]
CAMPBELLI H, GRIFFITHSR W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth and Planetary Science Letters, 1990, 99(1/2): 79-93.
[73]
ERNSTR E. Recognizing mantle plumes in the geological record[J]. Annual Review of Earth and Planetary Sciences, 2003, 31(31): 469-523.
[74]
COFFINM F, ELDHOLMO. Large igneous provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36.
[75]
PETTIGREWN T, HATTORIK H. The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions[J]. Precambrian Research, 2006, 149(1/2): 21-42.
[76]
THAKURTAJ, RIPLEYE M, LIC S. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): 1525-2027.
[77]
HELMYH M, EL MAHALLAWI M M. Gabbro Akarem mafic-ultramafic complex, eastern desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes[J]. Mineralogy and Petrology, 2003, 77(1): 85-108.
MARTINR F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 2006, 91(1/2/3/4): 125-136.
ZHOUM F, ROBINSONP T, BAIW J. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. Mineralium Deposita, 1994, 29(1): 98-101.
[82]
ZHOUM F, ROBINSONP T, MALPASJ, et al. Podiform chromitites in the Luobusa Ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21.