1. School of Information Science & Technology, Northwest University, Xi’an 710069, China
2. State Key Laboratory of Continental Dynamics/Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an 710069, China
3. College of Life Science, Linyi University, Linyi 276000, China
BORAZJANII, SOTIROPOULOSF. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J]. Journal of Experimental Biology, 2008, 211(10): 1541-1558.
[2]
CURATOLOM, TERESIL. The virtual aquarium: simulations of fish swimming[C]// Proceedings of European COMSOL conference. Stockholm: COMSOL, 2015.
[3]
GEMMELLB J, COSTELLOJ H, COLINS P, et al. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17904-17909.
[4]
GEMMELLB J, COLINS P, COSTELLOJ H. Widespread utilization of passive energy recapture in swimming medusae[J]. Journal of Experimental Biology, 2018, 221(1): jeb.168575.
[5]
MCHENRYM J, JEDJ. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita)[J]. The Journal of Experimental Biology, 2003, 206(22): 4125-4137.
[6]
WATERSJ A, WHITEL E, SUMRALLC D, et al. A new model of respiration in blastoid (Echinodermata) hydrospires based on computational fluid dynamic simulations of virtual 3D models[J]. Journal of Paleontology, 2017, 91(4): 662-671.
[7]
RAHMANI A, O’SHEAJ, LAUTENSCHLAGERS, et al. Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms[J]. Palaeontology, 2020, 63(5): 689-701.
[8]
SONGH C, SONGH J, RAHMANI A, et al. Computational fluid dynamics confirms drag reduction associated with trilobite queuing behaviour[J]. Palaeontology, 2021, 64(5): 597-608.
[9]
LABARBERAM. Feeding currents and particle capture mechanisms in suspension feeding animals[J]. Integrative and Comparative Biology, 1984, 24(1): 71-84.
TROWBRIDGEJ H, LENTZS J. The bottom boundary layer[J]. Annual Review of Marine Science, 2018, 10: 397-420.
[12]
CALDWELLD R, CHRISST M. The viscous sublayer at the sea floor[J]. Science, 1979, 205(4411): 1131-1132.
[13]
WENGROVEM E, FOSTERD L. Field evidence of the viscous sublayer in a tidally forced developing boundary layer[J]. Geophysical Research Letters, 2014, 41(14): 5084-5090.
[14]
GRANTW D, MADSENO S. The continental-shelf bottom boundary layer[J]. Annual Review of Fluid Mechanics, 1986, 18: 265-305.
[15]
LIUP, ZHANGY H, YANGX G, et al. Hydrodynamic simulations of millimeter-scale Cambrian sedmentary medusozoans[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(10): e2022JG006854.
[16]
RAHMANI A. Computational fluid dynamics as a tool for testing functional and ecological hypotheses in fossil taxa[J]. Palaeontology, 2017, 60(4): 451-459.
[17]
CHRISST M, CALDWELLD R. Universal similarity and the thickness of the viscous sublayer at the ocean floor[J]. Journal of Geophysical Research: Oceans, 1984, 89(C4): 6403-6414.
[18]
PRATTM C. Living where the flow is right: how flow affects feeding in bryozoans[J]. Integrative and Comparative Biology, 2008, 48(6): 808-822.
[19]
CSANADYG T. Circulation in the coastal ocean[M]// Advances in geophysics: Vol. 23. Amsterdam: Elsevier, 1981: 101-183.
GIBSONB M, RAHMANI A, MALONEYK M, et al. Gregarious suspension feeding in a modular Ediacaran organism[J]. Science Advances, 2019, 5(6): eaaw0260.
[22]
DENNYM. Biology and the mechanics of the wave-swept environment[M]// Biology and the mechanics of the wave-swept environment. Princeton: Princeton University Press, 2014: 117-133.