MOLNARP, TAPPONNIERP. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426.
[2]
ENGLANDP, HOUSEMANG. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676.
NEILE A, HOUSEMANG A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J]. Tectonics, 1997, 16(4): 571-584.
[5]
DAYEMK E, MOLNARP, CLARKM K, et al. Far-field lithospheric deformation in Tibet during continental collision[J]. Tectonics, 2009, 28(6): TC6005.
[6]
LIC, WANGS L, NAYLORM, et al. Evolution of the Cenozoic Tarim Basin by flexural subsidence and sediment ponding: insights from quantitative basin modelling[J]. Marine and Petroleum Geology, 2020, 112: 104047.
[7]
LIW, CHENY, YUANX H, et al. Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision[J]. Nature Communications, 2022, 13(1): 3738.
[8]
YINA, NIES, CRAIGP, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 1998, 17(1): 1-27.
[9]
DUMITRUT A, ZHOUD, CHANGE Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[J]. Memoir of the Geological Society of America, 2001, 194: 71-99.
[10]
SOBELE R, CHENJ, HEERMANCER V. Late Oligocene-Early Miocene initiation of shortening in the southwestern Chinese Tian Shan: implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 70-81.
JIAY Y, SUNJ M, LUL, et al. Late Oligocene-Miocene intra-continental mountain building of the Harke Mountains, southern Chinese Tian Shan: evidence from detrital AFT and AHe analysis[J]. Journal of Asian Earth Sciences, 2020, 191: 104198.
[13]
ZHANGT, FANGX, SONGC H, et al. Cenozoic tectonic deformation and uplift of the South Tian Shan: implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression[J]. Tectonophysics, 2014, 628: 172-187.
[14]
LIC, WANGS L, WANGL S. Tectonostratigraphic history of the southern Tian Shan, western China, from seismic reflection profiling[J]. Journal of Asian Earth Sciences, 2019, 172: 101-114.
[15]
CHENJ, HED. Propagation growth of en echelon detachment folds: case from the Nankalayuergun fold zone, North Tarim Basin, NW China[J]. Journal of Structural Geology, 2021, 143: 104253.
[16]
YANGY Q, LIUM. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan[J]. Tectonics, 2002, 21(6): 9. DOI: 10.1029/2001TC001300.
[17]
HUANGB C, PIPERJ D A, PENGS T, et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, western China[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 346-364.
[18]
CHARVETJ, SHUL S, LAURENT-CHARVETS, et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China: Earth Sciences, 2011, 54(2): 166-184.
LIJ Y, ZHANGJ, ZHAOX X, et al. Mantle subduction and uplift of intracontinental mountains: a case study from the Chinese Tianshan Mountains within Eurasia[J]. Scientific Reports, 2016, 6: 28831.
[21]
CHENH L, LINX B, CHENGX G, et al. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau[J]. Journal of the Geological Society, 2022, 179(2): jgs2021.
WANGX, SUPPEJ, GUANS W, et al. Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China[J]. AAPG Special Volumes, 2011, 94: 215-243.
ALLENM B, WINDLEYB F, ZHANGC. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1): 89-115.
[31]
CHARREAUJ, GUMIAUXC, AVOUACJ P, et al. The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: climatic and tectonic implications[J]. Earth and Planetary Science Letters, 2009, 287(3/4): 298-310.
LIUS F, NUMMEDALD. Late Cretaceous subsidence in Wyoming: quantifying the dynamic component[J]. Geology, 2004, 32(5): 397-400.
[34]
LIUS F, NUMMEDALD, LIUL J. Migration of dynamic subsidence across the Late Cretaceous United States Western Interior Basin in response to Farallon plate subduction[J]. Geology, 2011, 39(6): 555-558.
[35]
PREZZIC B, UBAC E, GÖTZEH J. Flexural isostasy in the Bolivian Andes: Chaco foreland basin development[J]. Tectonophysics, 2009, 474(3/4): 526-543.
BUROVE B, DIAMENTM. The effective elastic thickness (Te) of continental lithosphere: what does it really mean?[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B3): 3905-3927.
[38]
SCLATERJ G, CHRISTIEP A F. Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B7): 3711-3739.
[39]
AITKENA R A. Did the growth of Tibetan topography control the locus and evolution of Tien Shan Mountain building?[J]. Geology, 2011, 39(5): 459-462.
[40]
WICKERTA D. Open-source modular solutions for flexural isostasy: gFlex v1.0[J]. Geoscientific Model Development Discussions, 2015, 8(6): 4245-4292.
[41]
ALLENP A, ALLENJ R. Basin analysis: principles and application to petroleum play assessment[M]. 3rd ed. Chichester, West Susex, UK: Wiley-Blackwell, 2013.
JIANGX D, JINY, MCNUTTM K. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05406.
CLOETINGHS, BUROVE B. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates[J]. Geophysical Journal International, 1996, 124(3): 695-723.
[46]
LAVIERL L, STECKLERM S. The effect of sedimentary cover on the flexural strength of continental lithosphere[J]. Nature, 1997, 389: 476-479.
[47]
GAOR, HUANGD D, LUD Y, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2281-2286.
[48]
GAOR, HOUH, CAIX, et al. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China[J]. Lithosphere, 2013, 5(4): 382-392.
[49]
KAOH, GAOR, RAUR J, et al. Seismic image of the Tarim Basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575.
[50]
ZHAOJ M, LIUG D, LUZ X, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3): 199-239.
RICHTERF, PEARSONJ, VILKASM, et al. Growth of the southern Tian Shan-Pamir and its impact on central Asian climate[J]. GSA Bulletin, 2022, 135(7/8): 1859-1878.
[53]
TAPPONNIERP, MOLNARP. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459.
[54]
TAPPONNIERP, PELTZERG, LEDAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
[55]
ENGLANDP, HOUSEMANG. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions[J]. Nature, 1985, 315(6017): 297-301.
[56]
AVOUACJ P, TAPPONNIERP, BAIM, et al. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6755-6804.
[57]
YINA, HARRISONT M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
[58]
DEGRAVE J, BUSLOVM M, VANDEN HAUTE P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204.
[59]
HUANGFUP P, LIZ H, ZHANGK J, et al. India-tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094561.
[60]
JOLIVETM, DOMINGUEZS, CHARREAUJ, et al. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation[J]. Tectonics, 2010, 29(6): TC6019.
[61]
GLORIES, DEGRAVE J, BUSLOVM M, et al. Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: the role of inherited structures during deformation-propagation[J]. Tectonics, 2011, 30(6): TC6016.
[62]
ROWLEYD B, CURRIEB S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681.
[63]
MOLNARP, BOOSW R, BATTISTID S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 77-102.
[64]
SHAY Y, SHIZ G, LIUX D, et al. Role of the Tian Shan Mountains and Pamir Plateau in increasing spatiotemporal differentiation of precipitation over interior Asia[J]. Journal of Climate, 2018, 31(19): 8141-8162.
[65]
CHARREAUJ, GILDERS, CHENY, et al. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan Mountains[J]. Geology, 2006, 34(3): 181-184.