1. School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. Hubei Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430081, China
Show less
文章历史+
Received
Accepted
Published
2023-06-20
Issue Date
2025-03-24
PDF (2389K)
摘要
本文基于2002—2022年期间,知网、万方、Web of Science数据库收录的矿区周边土壤重金属文献数据,采用Meta分析方法,探讨我国不同地区和矿种类别的矿山开采对土壤重金属分布特征的影响。同时,结合地累积指数法和潜在生态风险指数法评估矿区周边土壤重金属生态风险。Meta分析结果显示,我国矿区周边土壤中镉(Cd)、汞(Hg)、铜(Cu)、铅(Pd)、锌(Zn)、砷(As)、镍(Ni)和铬(Cr)的浓度相较于土壤背景值,分别增加了820.7%、309.6%、158.6%、158.6%、146.0%、103.4%、24.6%和15%,其中,Cd和Hg增加量较多。从地区来看,中南和西南地区的矿区周边土壤重金属的效应值较大,其重金属浓度增加量分别为285.7%和180.1%,其中西南、中南和华东地区矿山周边土壤中Cd、Hg、Zn、Pb和Cu的含量增加较为显著,华北和东北地区的Cd和As、西北地区的Cd和Hg增加较为显著。从矿种类型看,铅锌矿、多金属矿、铜矿、金矿、汞矿、钼矿、锰矿、锡矿和包含石墨矿等其他矿种的周边土壤重金属浓度增加量为166.4%~617.1%,其中铅锌矿开采会使得Cd、Hg、Pb和Zn显著累积,金矿开采对As、Hg和Pb累积显著,铜矿、石墨、硫铁矿等其他矿种对Cd和Cu的含量累积显著,各类型矿对Ni和Cr的累积影响都很小。地累积指数法和潜在生态风险指数法评价结果显示,我国矿区周边土壤Cd和Hg地累积污染指数分别达到中等和轻微污染等级,且大部分土壤位点二者都具有高等级的潜在生态风险,因此,需加强矿区周边重点重金属Cd和Hg的污染防治。
基于此,本文从知网、万方和Web of Science(WOS)数据库中,检索收集了我国主要矿区的重金属污染数据,结合Meta统计分析方法,从地域分布和矿种类型的角度,分析我国矿区周边土壤重金属分布特征,并采用地累积指数法和潜在生态风险指数法来评估矿区土壤重金属生态风险,以期为我国矿区土壤重金属污染防治提供数据基础和决策支持。
LIUH, QUM, CHENJ, et al. Heavy metal accumulation in the surrounding areas affected by mining in China: spatial distribution patterns, risk assessment, and influencing factors[J]. Science of the Total Environment, 2022, 825: 154004.
[3]
SHIJ, DUP, LUOH L, et al. Soil contamination with cadmium and potential risk around various mines in China during 2000-2020[J]. Journal of Environmental Management, 2022, 310: 114509.
[4]
SMITHG D, EGGERM. Meta-analysis: unresolved issues and future developments[J]. British Medical Journal, 1998, 316(7126): 221-225.
[5]
GATTINGERA, MULLERA, HAENIM, et al. Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18226-18231.
[6]
TIANK, ZHAOY C, XUX H, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2015, 204: 40-50.
[7]
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[8]
BAIZ G, BINGQ, GONGR R, et al. Evidence based social science in China Paper 4: the quality of social science systematic reviews and meta-analysis published from 2000-2019[J]. Journal of Clinical Epidemiology, 2022, 141: 132-140.
HUANGY, WANGL Y, WANGW J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034-3042.
YUC X, PENGB, PELTOLAP, et al. Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China[J]. Environmental Geochemistry and Health, 2012, 34(3): 375-390.
KANX Q, DONGY Q, FENGL, et al. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: a meta-analysis[J]. Chemosphere, 2021, 267: 128909.
[29]
CHENH, TENGY, LUS, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512: 143-153.
XIAOX, ZHANGJ X, WANGH, et al. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis[J]. Science of the Total Environment, 2020, 713: 135292.
[40]
ZHONGX, CHENZ W, LIY Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289.
SHIJ D, ZHAOD, RENF T, et al. Spatiotemporal variation of soil heavy metals in China: the pollution status and risk assessment[J]. Science of the Total Environment, 2023, 871: 161768.