State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
全量Cd测定方法:称取样品0.50 g,加入 10 mL HClO4-HNO3混酸(3∶1)、1 mL氢氟酸,于电热板上消解,最后定容至20 mL,于电感耦合等离子体发射光谱仪(ICP-OES/MS)上进行测定。
不同化学浸提态Cd测定方法如下。
(1) Mehlich-3(M3)法。NH4F-EDTA贮备液:称量27.78 g NH4F和14.61 g EDTA,加入烧杯中用去离子水溶解,搅拌均匀后定容至120 mL,取14.61 g EDTA充分搅拌均匀溶解后定容至200 mL,并转移至锥形瓶中冷藏备用。M3试剂:称量20.0 g NH4NO3溶于去离子水后,定容至500 mL,量取上述贮备液4 mL加入,再量取11.5 mL CH3COOH和0.82 mL HNO3,最后定容至1 L,此时溶液pH值应为2.5±0.1,转移至锥形瓶备用[8]。
LUOL, MAY B, ZHANGS Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
[4]
SMOLDERSE, MERTENSJ. Cadmium[M]// ALLOWAYB J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Germany, Berlin: Springer, 2013, 283-311.
GAOY, DUANZ Q, ZHANGL X, et al. The status and research progress of cadmium pollution in rice- (Oryza sativa L.) and wheat- (Triticum aestivum L.) cropping systems in China: a critical review[J]. Toxics, 2022, 10(12): 794.
TESSIERA, CAMPBELLP G C, BISSONM. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[11]
QUEVAUVILLERP, RAURETG, GRIEPINKB. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231-235.
WANGM, CHENS B, WANGD, et al. Agronomic management for cadmium stress mitigation[M]// HASANUZZAMANM, PRASADM N V, NAHARK. Cadmium tolerance in plants:agronomic, molecular, signaling, and omic approaches. Nertherlands, Amsterdam: Elsevier, 2019: 69-112.
[18]
LOGANATHANP, VIGNESWARANS, KANDASAMYJ, et al. Cadmium sorption and desorption in soils: a review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(5): 489-533.
[19]
KOMÁREKM, KORETSKYC M, STEPHENK J, et al. Competitive adsorption of Cd(II), Cr(VI), and Pb(II) onto nanomaghemite: a spectroscopic and modeling approach[J]. Environmental Science and Technology, 2015, 49(21): 12851-12859.
[20]
LIUL, WANGX M, ZHUM Q, et al. The speciation of Cd in Cd-Fe coprecipitates: does Cd substitute for Fe in goethite structure?[J]. ACS Earth and Space Chemistry, 2019, 3(10): 2225-2236.
[21]
LÜTZENKIRCHENJ, HEBERLINGF, SUPLJIKAF, et al. Structure-charge relationship: the case of hematite (001)[J]. Faraday Discussions, 2015, 180: 55-79.
[22]
MCLAUGHLINM J, LANNOR. Use of “Bioavailability” as a term in ecotoxicology[J]. Integrated Environmental Assessment and Management, 2014, 10(1): 138-140.
[23]
SORIANO-DISLAJ M, SPEIRT W, GÓMEZI, et al. Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils[J]. Water, Air, and Soil Pollution, 2010, 213(1): 471-483.
[24]
PUEYOM, LÓPEZ-SÁNCHEZJ, RAURETG. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica Chimica Acta, 2003, 504(2): 217-226.
[25]
VÁZQUEZS, MORENOE, CARPENAR O. Bioavailability of metals and as from acidified multicontaminated soils: use of white lupin to validate several extraction methods[J]. Environmental Geochemistry and Health, 2008, 30(2): 193-198.
[26]
HIEMSTRAT. Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite, and maghemite[J]. Environmental Science: Nano, 2018, 5(3): 752-764.
[27]
LUH L, LIK W, NKOHJ N, et al. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils[J]. Chemosphere, 2022, 301: 134674.
[28]
MONTERROSOC, ALVAREZE, FERNÁNDEZ MARCOSM L. Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils[J]. Land Degradation and Development, 1999, 10(1): 35-47.