1. Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
3. School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
4. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
5. Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing 101149
6. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
矿物除了可以为微生物提供多种物理与化学保护作用,微生物还可以从矿物获取关键营养元素(图1c),包括主量元素(K、P、Na、Si、Mn、S、Mg、Ca等基本生命元素)和微量元素(Fe、Mo、Ni等金属辅酶因子)[2,4,23⇓⇓-26],即矿物为微生物提供了生长和代谢所需的矿质养分[27-28]。尤其是黏土矿物,如蒙脱土、伊利石和高岭石,在微生物和岩石圈之间的相互作用中扮演着核心角色[18,22,29]。黏土矿物具有强吸附性、高阳离子交换能力和可膨胀性[30-31],它们能够为微生物提供关键营养元素[32-33],从而对微生物的生长和代谢产生重要影响[34]。研究表明:蒙脱石可以通过促进有机、无机物的交换以及提供pH缓冲作用来提高微生物的活性[35];绿脱石能够为细胞提供必要的养分,支持细胞生长[36];皂石通过其巨大的比表面积,积累营养物质或维持pH水平,从而增加了活细胞的数量[1]。在真菌菌丝集合体内存在的黏土矿物有助于去除有毒代谢物。例如,随着黏土浓度的增加,C. cladosporioides、H. grisea 和 C. herbarum 中多糖类外源聚合物的产量降低,因此避免菌丝团在稳定期内老化和下降[32]。
通常由黏土矿物提供的金属元素按需求量依次为: K > Na > Mg > Ca > Fe >> Mn, Co, Zn, Cu, Si, Ni 和 Mo[35]。微生物通过结构铁的氧化还原循环或者产生代谢产物溶解黏土矿物[18,34],从而从黏土矿物中释放营养物质[1,37]。例如,微生物通过还原黏土结构中的Fe(III)而释放Si元素,在土壤和海洋的Si循环中发挥重要作用[38]。产甲烷古菌通过还原结构铁从黏土矿物释放Fe2+离子[39],提高甲烷产量[40]。此外,环境中营养物质的缺乏可能会促进微生物表达特定的功能基因,从而提高微生物从黏土矿物中获取营养物质的能力[2,41],譬如,微生物通过特定基因的表达,产生铁载体和螯合剂,从这些矿物中吸收微量金属元素[42]。Pseudomonas fluorescens菌株可以产生不同的代谢产物,从蛭石中吸收微量元素。其中某些特定代谢产物(如2,4-二乙酰间苯三酚)对Cu起到螯合作用[43]。
黏土矿物入药历史悠久,我国明代医药学家李时珍所著《本草纲目》中专门开辟“土部”药材,罗列多达六十一种黏土药物。在西方,古希腊哲学家亚里士多德曾记录下黏土矿物被用于治疗皮肤炎症的事例[173]。黏土矿物因其颗粒细小、比表面积大、表面活性高、层间可交换阳离子丰富及吸附性强等理化特性,被广泛用于缓解伤口脓肿、治疗消化不良等疾病[174⇓-176]。近年来,研究发现还原态含铁黏土矿物及其混合物具备广谱的杀菌能力,对常见耐药致病菌株如产超广谱β-内酰胺酶大肠杆菌(extended-spectrum β-lactamase E. coli, EBSL E. coli)、耐甲氧西林金黄色葡萄球菌(methicillin-resistant S. aureus, MRSA)等均表现出极强的杀菌效果[177⇓⇓⇓-181]。
CUADROSJ. Clay minerals interaction with microorganisms: a review[J]. Clay Minerals, 2017, 52: 235-261.
[2]
DONGH, HUANGL, ZHAOL, et al. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): nwac128.
UROZS, KELLYL C, TURPAULTM P, et al. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities[J]. Trends in Microbiology, 2015, 23: 751-762.
[5]
BELNAPJ. The world at your feet: desert biological soil crusts[J]. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189.
XUS, XINGY, LIUS, et al. Co-effect of minerals and Cd(ii) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(ii)[J]. Environmental Pollution, 2020, 258: 113774.
[9]
FREEBAIRND, LINTOND, HARKINJONESE, et al. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces[J]. Expert Review of Medical Devices, 2013, 10(1): 85-103.
[10]
FOMINAM, BURFORDE P, GADDG M. Toxic metals and fungal communities[M]. Boca Raton: CRC Press, 2005.
[11]
JOHNSTONC T. Probing the nanoscale architecture of clay minerals[J]. Clay Minerals, 2010, 45(3): 245-279.
[12]
ALIMOVAA, KATZA, STEINERN, et al. Bacteria-clay interaction: structural changes in smectite induced during biofilm formation[J]. Clays and Clay Minerals, 2009, 57: 205-212.
[13]
ZHANGD, LIUX, GUOD, et al. Cr(VI) reduction by siderophore alone and in combination with reduced clay minerals[J]. Environmental Science & Technology, 2022, 56(17): 12315-12324.
[14]
XIAQ, JINQ, CHENY, et al. Combined effects of Fe(III)-bearing nontronite and organic ligands on biogenic U(IV) oxidation[J]. Environmental science & Technology, 2022, 56(3): 1983-1993.
[15]
DAFONSECA M G, DE OLIVERIAM M, ARAKAKIL N H, et al. Natural vermiculite as an exchanger support for heavy cations in aqueous solution[J]. Journal of Colloid and Interface Science, 2005, 285: 50-55.
[16]
BISHOPM E, GLASSERP, DONGH, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203.
[17]
HUANGL, LIUZ, DONGH, et al. Coupling quinoline degradation with Fe redox in clay minerals: a strategy integrating biological and physicochemical processes[J]. Applied Clay Science, 2020, 188: 105504.
[18]
DONGH. Clay-microbe interactions and implications for environmental mitigation[J]. Elements, 2012, 8: 113-118.
[19]
OLSONJ M, PIERSONB K. Photosynthesis 3.5 thousand million years ago[J]. Photosynthesis Research, 1986, 9(1): 251-259.
[20]
KUGLERA, DONGH. Phyllosilicates as protective habitats of filamentous cyanobacteria leptolyngbya against ultraviolet radiation[J]. Plos One, 2019, 14: e0219616.
[21]
HAZELTONP, MURPHYB. Interpreting soil test results: what do all the numbers mean?[M]. Clayton South VIC 3169:CSIRO Publishing, 2016.
[22]
STOTZKYG, REML T. Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria[J]. Canadian Journal of Microbiology, 1966, 12(3): 547-563.
[23]
BROWNJR G E, FOSTERA L, OSTERGRENJ D. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective[J]. Proceedings of the National Academy of Sciences, 1999, 96: 3388-3395.
[24]
DONGH, ZENGQ, SHENGY, et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth & Environment, 2023, 4: 659-673.
[25]
GADDG M. Metals, minerals and microbes: geomicrobiology and bioremediation[J]. Microbiology, 2010, 156: 609-643.
[26]
ROGERSJ R, BENNETTP C. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates[J]. Chemical Geology, 2004, 203(1/2): 91-108.
[27]
SHIL, DONGH L, REGUERAG, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662.
[28]
MOOREE K, JELENB I, GIOVANNELLID, et al. Metal availability and the expanding network of microbial metabolisms in the archaean eon[J]. Nature Geoscience, 2017, 10(9): 629-636.
[29]
HUD, ZENGQ, LIUX, et al. Ligand enhanced bio-oxidation of structural Fe(II) in illite coupled with nitrate reduction[J]. Geochimica et Cosmochimica Acta, 2023, 357: 50-63.
[30]
MURRAYH H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Applied Clay Science, 2000, 17(5/6): 207-221.
[31]
ZHANGD, ZHOUC H, LINC X, et al. Synthesis of clay minerals[J]. Applied Clay Science, 2020, 50: 1-11.
[32]
FOMINAM, GADDG M. Influence of clay minerals on the morphology of fungal pellets[J]. Mycological Research, 2002, 106: 107-117.
[33]
DONGH, JAISID P, KIMJ, et al. Microbe-clay mineral interactions[J]. American Mineralogist, 2009, 94(11/12): 1505-1519.
[34]
FOMINAM, SKOROCHODI. Microbial interaction with clay minerals and its environmental and biotechnological implications[J]. Minerals, 2020, 10(10): 861.
[35]
RANSOMB, BENNETTR H, BAERWALDR, et al. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: a TEM microfabric perspective[J]. American Mineralogist, 1999, 84(1/2): 183-192.
[36]
JAISID P, KUKKADAPUR K, EBERLD D, et al. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5429-5440.
[37]
DONGH, LUA. Mineral-microbe interactions and implications for remediation[J]. Elements, 2012, 8(2): 95-100.
[38]
VORHIESJ S, GAINESR R. Microbial dissolution of clay minerals as a source of iron and silica in marine sediments[J]. Nature Geoscience, 2009, 2(3): 221-225.
[39]
LIUD, DONGH, BISHOPM E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1057-1071.
[40]
WEIJ, HAOX, VANLOOSDRECHT M C, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 16-26.
[41]
XIAOB, LIANB, SUNL, et al. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus[J]. Chemical Geology, 2012, 306: 1-9.
[42]
MÜLLERB. Experimental interactions between clay minerals and bacteria: a review[J]. Pedosphere, 2015, 25(6): 799-810.
[43]
MÜLLERB. Impact of the bacterium pseudomonas fluorescens and its genetic derivatives on vermiculite: effects on trace metals contents and clay mineralogical properties[J]. Geoderma, 2009, 153(1/2): 94-103.
[44]
STUCKIJ W. A review of the effects of iron redox cycles on smectite properties[J]. Comptes Rendus Geoscience, 2011, 343(2): 199-209.
[45]
FAVREF, STUCKIJ W, BOIVINP. Redox properties of structural Fe in ferruginous smectite. A discussion of the standard potential and its environmental implications[J]. Clays and Clay Minerals, 2006, 54(4): 466-472.
[46]
KAPPLERA, BRYCEC, MANSORM, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
[47]
LIUD, DONGH, ZHAOL, et al. Smectite reduction by Shewanella species as facilitated by cystine and cysteine[J]. Geomicrobiology Journal, 2014, 31(1): 53-63.
[48]
YANGS, LIUD, ZHENGW, et al. Microbial reduction and alteration of Fe(III)-containing smectites in the presence of biochar-derived dissolved organic matter[J]. Applied Geochemistry, 2023, 152: 105661.
[49]
ZHAOH, BHATTACHARJEES, CHOWR, et al. Probing surface charge potentials of clay basal planes and edges by direct force measurements[J]. Langmuir, 2008, 24(22): 12899-12910.
[50]
RIBEIROF R, FABRISJ D, KOSTKAJ E, et al. Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite[J]. Pure and Applied Chemistry, 2009, 81(8): 1499-1509.
[51]
LUANF, GORSKIC A, BURGOSW D. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium[J]. Environmental Science & Technology, 2014, 48(5): 2750-2758.
[52]
ZUOH, HUANGL, CHUR K, et al. Reduction of structural Fe(III) in nontronite by humic substances in the absence and presence of Shewanella putrefaciens and accompanying secondary mineralization[J]. American Mineralogist, 2021, 106(12): 1957-1970.
[53]
LIUY, SHIS, ZENGQ, et al. Coupled reduction of structural Fe(III) in nontronite and oxidation of petroleum hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2023, 344: 103-121.
[54]
LIY, VALIH, SEARSS K, et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3251-3260.
[55]
LIUD, DONGH, BISHOPM E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10(2): 150-162.
[56]
ZHANGJ, DONGH, LIUD, et al. Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei[J]. Chemical Geology, 2012, 292/293: 35-44.
[57]
ZHANGJ, DONGH, LIUD, et al. Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2013, 106: 203-215.
[58]
LIUD, DONGH, WANGH, et al. Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium[J]. Chemical Geology, 2015, 406: 25-33.
[59]
ZHAOL, DONGH, KUKKADAPUR, et al. Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002[J]. Geochimica et Cosmochimica Acta, 2013, 119: 231-247.
[60]
ZHAOL, DONGH, KUKKADAPUR K, et al. Biological redox cycling of iron in nontronite and its potential application in nitrate removal[J]. Environmental Science & Technology, 2015, 49(9): 5493-5501.
[61]
ZHAOL, DONGH, EDELMANNR E, et al. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation[J]. Geochimica et Cosmochimica Acta, 2017, 200: 353-366.
[62]
BRYCEC, BLACKWELLN, SCHMIDTC, et al. Microbial anaerobic Fe(II) oxidation-ecology, mechanisms and environmental implications[J]. Environmental Microbiology, 2018, 20(10): 3462-3483.
[63]
BYRNEJ M, KLUEGLEINN, PEARCEC, et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria[J]. Science, 2015, 347(6229): 1473-1476.
[64]
DONGH, KOSTKAJ E, KIMJ. Microscopic evidence for microbial dissolution of smectite[J]. Clays and Clay Minerals, 2003, 51(5): 502-512.
[65]
ZHANGG, KIMJ, DONGH, et al. Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer[J]. American Mineralogist, 2007, 92(8/9): 1401-1410.
[66]
DONGH, PEACORD R, FREEDR L. Phase relations among smectite, R1 illite-smectite, and illite[J]. American Mineralogist, 1997, 82(3/4): 379-391.
[67]
PEVEARD R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3440-3446.
[68]
KIMJ, DONGH, SEABAUGHJ, et al. Role of microbes in the smectite-to-illite reaction[J]. Science, 2004, 303(5659): 830-832.
[69]
ZHANGG, DONGH, KIMJ, et al. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction[J]. American Mineralogist, 2007, 92(8/9): 1411-1419.
LIUD, ZHANGQ, WUL, et al. Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite[J]. Chemical Geology, 2016, 447: 199-207.
[72]
KASTNERM, SIEVERR. Low temperature feldspars in sedimentary rocks[J]. American Journal of Science, 1979, 279: 435-479.
[73]
RAISP, LOUIS-SCHMIDB, BERNASCONIS M, et al. Distribution of authigenic albites in a limestone succession of the Helvetic Domain, eastern Switzerland[J]. Swiss Journal of Geosciences, 2008, 101(1): 99-106.
[74]
YANGX, LIY, LIY, et al. Microbially induced clay weathering: smectite-to-kaolinite transformation[J]. American Mineralogist, 2023, 108(10): 1940-1947.
[75]
KEILR G, TSAMAKISE, FUHC B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using splitt-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879-893.
[76]
KEILR G, MONTLUÇOND B, PRAHLF G, et al. Sorptive preservation of labile organic matter in marine sediments[J]. Nature, 1994, 370(6490): 549-552.
[77]
KEILR G, MAYERL M. 12.12 - mineral matrices and organic matter[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. 2nd ed. Oxford: Elsevier, 2014: 337-359.
[78]
KLEBERM, EUSTERHUESK, KEILUWEITM, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1-140.
[79]
ZENGQ, DONGH, ZHAOL, et al. Preservation of organic matter in nontronite against iron redox cycling[J]. American Mineralogist, 2016, 101(1): 120-133.
[80]
KENNEDYM J, PEVEARD R, HILLR J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555): 657-660.
[81]
KENNEDYM, DROSERM, MAYERL M, et al. Late Precambrian oxygenation: inception of the clay mineral factory[J]. Science, 2006, 311(5766): 1446-1449.
[82]
CAIC, CAIJ, LIUH, et al. Occurrence of organic matter in argillaceous sediments and rocks and its geological significance: a review[J]. Chemical Geology, 2023, 639: 121737.
[83]
DUBINSKYE A, SILVERW L, FIRESTONEM K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry[J]. Ecology, 2010, 91(9): 2604-2612.
[84]
TANJ, LUOM, TANF, et al. Iron reduction controls carbon mineralization in aquaculture shrimp pond sediments in subtropical estuaries[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(12): e2022JG007081.
[85]
YUANY, DINGC, WUH, et al. Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake[J]. Fundamental Research, 2022, 3(6): 844-851.
[86]
WARDMANP. Reduction potentials of one-electron couples involving free radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637-1755.
[87]
VANBODEGOM P M, BROEKMANR, VANDIJK J, et al. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands[J]. Biogeochemistry, 2005, 76(1): 69-83.
[88]
NAUGHTONH R, TOLARB B, DEWEYC, et al. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils[J]. Soil Biology and Biochemistry, 2023, 178: 108962.
[89]
VANERK M R, BOURCEAUO M, MONCADAC, et al. Reactive oxygen species affect the potential for mineralization processes in permeable intertidal flats[J]. Nature Communications, 2023, 14(1): 938.
[90]
CHENN, FUQ, WUT, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil[J]. Environmental Science & Technology, 2021, 55(20): 14281-14293.
[91]
HALLS J, SILVERW L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology, 2013, 19(9): 2804-2813.
[92]
JONESM E, LACROIXR E, ZEIGLERJ, et al. Enzymes, manganese, or iron? Drivers of oxidative organic matter decomposition in soils[J]. Environmental Science & Technology, 2020, 54(21): 14114-14123.
[93]
ZENGQ, WANGX, LIUX, et al. Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: hydroxyl radical generation and humic acid transformation[J]. Environmental Science & Technology, 2020, 54(23): 15013-15023.
[94]
HUD, ZENGQ, ZHUJ, et al. Promotion of humic acid transformation by abiotic and biotic Fe redox cycling in nontronite[J]. Environmental Science & Technology, 2023, 57(48): 19760-19771.
[95]
ZIMMERMANA R, AHNM Y. Organo-mineral-enzyme interaction and soil enzyme activity[M]. Soil Enzymology: Springer, 2010: 271-292.
[96]
ALLISONS D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[J]. Ecology Letters, 2005, 8(6): 626-635.
[97]
SINSABAUGHR L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry, 2010, 42(3): 391-404.
[98]
BURNSR G, DEFORESTJ L, MARXSENJ, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013, 58: 216-234.
[99]
LUOL, MENGH, GUJ D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197: 539-549.
[100]
LAMMIRATOC, MILTNERA, WICKL Y, et al. Hydrolysis of cellobiose by beta-glucosidase in the presence of soil minerals - interactions at solid-liquid interfaces and effects on enzyme activity levels[J]. Soil Biology & Biochemistry, 2010, 42(12): 2203-2210.
[101]
KLEBERM, BOURGI C, COWARDE K, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth & Environment, 2021, 2(6): 402-421.
[102]
SCHIMELJ, BECERRAC A, BLANKINSHIPJ. Estimating decay dynamics for enzyme activities in soils from different ecosystems[J]. Soil Biology Biochemistry, 2017, 114: 5-11.
[103]
SHENGY, DONGH, COFFINE, et al. The important role of enzyme adsorbing capacity of soil minerals in regulating β-glucosidase activity[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097556.
[104]
FREEMANC, OSTLEN, KANGH. An enzymic ‘latch’ on a global carbon store[J]. Nature, 2001, 409(6817): 149-149.
[105]
WANGY, WANGH, HEJ S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, 8(1): 15972.
[106]
MERINOC, MATUSF, KUZYAKOVY, et al. Contribution of the fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions[J]. Science of The Total Environment, 2021, 760: 143397.
[107]
ZHAOY, XIANGW, HUANGC, et al. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling[J]. Soil Biology and Biochemistry, 2021, 156: 108241.
[108]
SHENGY, HUJ, KUKKADAPUR, et al. Inhibition of extracellular enzyme activity by reactive oxygen species upon oxygenation of reduced iron-bearing minerals[J]. Environmental Science & Technology, 2023, 57(8): 3425-3433.
[109]
WANGC, BLAGODATSKAYAE, DIPPOLDM A, et al. Keep oxygen in check: contrasting effects of short-term aeration on hydrolytic versus oxidative enzymes in paddy soils[J]. Soil Biology and Biochemistry, 2022, 169: 108690.
[110]
EGLIC M, STRAVSM A, JANSSENE M L. Inactivation and site-specific oxidation of aquatic extracellular bacterial leucine aminopeptidase by singlet oxygen[J]. Environmental Science & Technology, 2020, 54(22): 14403-14412.
[111]
GARWOODG, MORTLANDM, PINNAVAIAT. Immobilization of glucose oxidase on montmorillonite clay: hydrophobic and ionic modes of binding[J]. Journal of Molecular Catalysis, 1983, 22(2): 153-163.
[112]
SEREFOGLOUE, LITINAK, GOURNISD, et al. Smectite clays as solid supports for immobilization of beta-glucosidase: synthesis, characterization, and biochemical properties[J]. Chemistry of Materials, 2008, 20(12): 4106-4115.
[113]
GOPINATHS, SUGUNANS. Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity[J]. Applied Clay Science, 2007, 35(1/2): 67-75.
[114]
YANGZ M, LIAOY J, FUX, et al. Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by beta-glucosidase[J]. Science of The Total Environment, 2019, 686: 1194-1201.
[115]
TENHAVE R, TEUNISSENP J. Oxidative mechanisms involved in lignin degradation by white-rot fungi[J]. Chemical Reviews, 2001, 101(11): 3397-3414.
[116]
GUILLÉNF, GÓMEZ-TORIBIOV, JESÚSMARTI NEZ M, et al. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase[J]. Archives of Biochemistry and Biophysics, 2000, 383(1): 142-147.
[117]
PERNAV, MEYERA S, HOLCKJ, et al. Laccase-catalyzed oxidation of lignin induces production of H2O2[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(2): 831-841.
[118]
DASHTBANM, SCHRAFTH, SYEDT A, et al. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 2010, 1(1): 36.
[119]
WEID, HOUTMANC J, KAPICHA N, et al. Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta[J]. Applied and Environmental Microbiology, 2010, 76(7): 2091-2097.
[120]
ZHAOS, JINQ, SHENGY, et al. Promotion of microbial oxidation of structural Fe(II) in nontronite by oxalate and NTA[J]. Environmental Science & Technology, 2020, 54(20): 13026-13035.
[121]
SHELOBOLINAE S, VANPRAAGHC G, LOVLEYD R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri[J]. Geomicrobiology Journal, 2003, 20(2): 143-156.
[122]
SHELOBOLINAE, KONISHIH, XUH, et al. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil[J]. Frontiers in Microbiology, 2012, 3: 134.
[123]
YANGJ, KUKKADAPUR K, DONGH, et al. Effects of redox cycling of iron in nontronite on reduction of technetium[J]. Chemical Geology, 2012, 291: 206-216.
[124]
SAWAYAMAS. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72.
[125]
CLÉMENTJ C, SHRESTHAJ, EHRENFELDJ G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328.
[126]
LIX, HOUL, LIUM, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568.
[127]
DINGL J, ANX L, LIS, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.
[128]
ZHOUG W, YANGX R, LIH, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron (III) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307.
[129]
KIRIAZISN A. Evidence for iron-dependent anaerobic ammonium oxidation to nitrate (feammox) in deep-sea sediments[D]. Atlanta: Georgia Institute of Technology, 2015.
YANGW H, WEBERK A, SILVERW L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541.
[132]
GILSONE R, HUANGS, JAFFÉP R. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions[J]. Biodegradation, 2015, 26: 475-482.
[133]
RUIZ-URIGÜENM, JAFFEP R. Microbial anaerobic ammonium oxidation under iron reducing conditions, alternative electron acceptors[C]// Proceedings of the AGU Fall Meeting Abstracts. Washington: American Geophysical Union, 2015: BBC-0639.
FANT, WANGM, WANGX, et al. Experimental study of the adsorption of nitrogen and phosphorus by natural clay minerals[J]. Adsorption Science & Technology, 2021, Volume 2021: 1-14. article ID 4158151.
[136]
HANWAYJ J, SCOTTA, STANFORDG. Replaceability of ammonium fixed in clay minerals as influenced by ammonium or potassium in the extracting solution[J]. Soil Science Society of America Journal, 1957, 21(1): 29-34.
[137]
SCHERERH, FEILSE, BEUTERSP. Ammonium fixation and release by clay minerals as influenced by potassium[J]. Plant, Soil and Environment, 2014, 60(7): 325-331.
[138]
YINH, YUNY, ZHANGY, et al. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite[J]. Journal of Hazardous Materials, 2011, 198: 362-369.
[139]
FANGH, CUIZ, HEG, et al. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology[J]. Science of The Total Environment, 2017, 605/606: 357-367.
[140]
PERASSII, BORGNINOL. Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: effect of pH, ionic strength and competition with humic acid[J]. Geoderma, 2014, 232/234: 600-608.
[141]
GEELHOEDJ S, VANRIEMSDIJK W H, FINDENEGGG R. Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite[J]. European Journal of Soil Science, 1999, 50(3): 379-390.
[142]
HINSINGERP. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237(2): 173-195.
[143]
BINNERI, DULTZS, SCHENKM K A. Phosphorus buffering capacity of substrate clays and its significance for plant cultivation[J]. Journal of Plant Nutrition and Soil Science, 2015, 178: 155-164.
[144]
ZHANGL, HUY, HANF, et al. Influences of multiple clay minerals on the phosphorus transport driven by Aspergillus niger[J]. Applied Clay Science, 2019, 177: 12-18.
[145]
TAZAKIK. Microbial formation of a halloysite-like mineral[J]. Clays and Clay Minerals, 2005, 53(3): 224-233.
[146]
YANGX, LIY, LUA, et al. Effect of bacillus Mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite[J]. Applied Clay Science, 2016, 119: 141-145.
[147]
POORNIS, NATARAJANK A. Microbially induced selective flocculation of hematite from kaolinite[J]. International Journal of Mineral Processing, 2013, 125: 92-100.
[148]
SONGX, QIUG, WANGH, et al. Bio-desilication of rutile concentrate and analysis of community structure in bio-desilication reactor[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2398-2406.
[149]
HUANGJ, JONESA, WAITET D, et al. Fe(II) redox chemistry in the environment[J]. Chemical Reviews, 2021, 121(13): 8161-8233.
[150]
QUC, CHENW, HUX, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995.
FANGL, CAIP, LIP, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1031-1038.
[153]
LIUX, DONGH, YANGX, et al. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite[J]. Journal of Hazardous Materials, 2018, 343: 245-254.
[154]
LIUX, DONGH, ZENGQ, et al. Synergistic effects of reduced nontronite and organic ligands on Cr(VI) reduction[J]. Environmental Science & Technology, 2019, 53(23): 13732-13741.
[155]
DENGL, LIUF, DINGZ, et al. Effect of natural organic matter on Cr(VI) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198.
[156]
ZHANGL, CHENY, XIAQ, et al. Combined effects of Fe(III)-bearing clay minerals and organic ligands on U(VI) bioreduction and U(IV) speciation[J]. Environmental Science & Technology, 2021, 55(9): 5929-5938.
[157]
CERVINI-SILVAJ, LARSONR A, WUJ, et al. Transformation of chlorinated aliphatic compounds by ferruginous smectite[J]. Environmental Science & Technology, 2001, 35(4): 805-809.
[158]
CERVINI-SILVAJ, LARSONR A, WUJ, et al. Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite[J]. Chemosphere, 2002, 47(9): 971-976.
[159]
LEEW, BATCHELORB. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates[J]. Chemosphere, 2004, 56(10): 999-1009.
[160]
ENTWISTLEJ, LATTAD E, SCHERERM M, et al. Abiotic degradation of chlorinated solvents by clay minerals and Fe(II): evidence for reactive mineral intermediates[J]. Environmental Science & Technology, 2019, 53(24): 14308-14318.
[161]
HOFSTETTERT B, NEUMANNA, SCHWARZENBACHR P. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites[J]. Environmental Science & Technology, 2006, 40(1): 235-242.
[162]
LUANF, GORSKIC A, BURGOSW D. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds[J]. Environmental Science & Technology, 2015, 49(6): 3557-3565.
[163]
HOFSTETTERT B, SCHWARZENBACHR P, HADERLEINS B. Reactivity of Fe(II) species associated with clay minerals[J]. Environmental Science & Technology, 2003, 37(3): 519-528.
[164]
ROTHWELLK A, PENTRAKM P, PENTRAKL A, et al. Reduction pathway-dependent formation of reactive Fe(II) sites in clay minerals[J]. Environmental Science & Technology, 2023, 57(28): 10231-10241.
[165]
TONGM, YUANS, MAS, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1): 214-221.
[166]
LIUX, YUANS, TONGM, et al. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite[J]. Water Research, 2017, 113: 72-79.
[167]
ZENGQ, DONGH, WANGX, et al. Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals[J]. Journal of Hazardous Materials, 2017, 331: 88-98.
[168]
ZHOUZ, ZENGQ, LIG, et al. Oxidative degradation of commingled trichloroethylene and 1, 4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral[J]. Chemosphere, 2022, 290: 133265.
[169]
ZHOUZ, YUT, DONGH, et al. Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral[J]. Applied Clay Science, 2019, 180: 105199.
[170]
SEKARR, DICHRISTINAT J. Microbially driven fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane[J]. Environmental Science & Technology, 2014, 48(21): 12858-12867.
[171]
HANR, LVJ, HUANGZ, et al. Pathway for the production of hydroxyl radicals during the microbially mediated redox transformation of iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2020, 54(2): 902-910.
[172]
ZENGQ, DONGH, WANGX. Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite[J]. Geochimica et Cosmochimica Acta, 2019, 251: 136-156.
[173]
CARRETEROM, GOMESC, TATEOF. Clays and human health[J]. Developments in Clay Science, 2006, 1: 717-741.
[174]
AWADM E, LÓPEZ-GALINDOA, SETTIM, et al. Kaolinite in pharmaceutics and biomedicine[J]. International Journal of Pharmaceutics, 2017, 533(1): 34-48.
[175]
FINKELMANR B. The influence of clays on human health: a medical geology perspective[J]. Clays and Clay Minerals, 2019, 67(1): 1-6.
[176]
VISERASC, CARAZOE, BORREGO-SÁNCHEZA, et al. Clay minerals in skin drug delivery[J]. Clays and Clay Minerals, 2019, 67(1): 59-71.
[177]
HAYDELS E, REMENIHC M, WILLIAMSL B. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens[J]. Journal of Antimicrobial Chemotherapy, 2008, 61(2): 353.
[178]
OTTOC C, KOEHLJ L, SOLANKYD, et al. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity[J]. PLoS One, 2014, 9(12): e115172.
[179]
MORRISONK D, MISRAR, WILLIAMSL B. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance[J]. Scientific Reports, 2016, 6: 19043.
[180]
LONDONOS C, HARTNETTH E, WILLIAMSL B. The antibacterial activity of aluminum in clay from the colombian amazon[J]. Environmental Science & Technology, 2017, 51(4): 2401-2408.
[181]
CAFLISCHK M, SCHMIDT-MALANS M, MANDREKARJ N, et al. Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections[J]. International Journal of Antimicrobial Agents, 2018, 52(5): 692-696.
[182]
KONHAUSERK O, URRUTIAM M. Bacterial clay authigenesis: a common biogeochemical process[J]. Chemical Geology, 1999, 161(4): 399-413.
[183]
LONDONOS C, WILLIAMSL B. Unraveling the antibacterial mode of action of a clay from the colombian amazon[J]. Environmental Geochemistry & Health, 2015, 38(2): 363-379.
[184]
XIAQ, WANGX, ZENGQ, et al. Mechanisms of enhanced antibacterial activity by reduced chitosan-intercalated nontronite[J]. Environmental Science & Technology, 2020, 54(8): 5207-5217.
[185]
WANGX, DONGH, ZENGQ, et al. Reduced iron-containing clay minerals as antibacterial agents[J]. Environmental Science & Technology, 2017, 51(13): 7639-7647.
[186]
GUOD, XIAQ, ZENGQ, et al. Antibacterial mechanisms of reduced iron-containing smectite-illite clay minerals[J]. Environmental Science & Technology, 2021, 55(22): 15256-15265.
[187]
XIAQ, CHENJ, DONGH. Effects of organic ligands on the antibacterial activity of reduced iron-containing clay minerals: higher extracellular hydroxyl radical production yet lower bactericidal activity[J]. Environmental Science & Technology, 2023, 57(17): 6888-6897.
[188]
YUANS, LIUX, LIAOW, et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223: 422-436.
[189]
WILLIAMSL B. Natural antibacterial clay: historical uses and modern advances[J]. Clays and Clay Minerals, 2019, 67(1): 7-24.
[190]
ZATTAP, KISST, SUWALSKYM, et al. Aluminium (III) as a promoter of cellular oxidation[J]. Coordination Chemistry Reviews, 2002, 228(2): 271-284.
[191]
OTEIZAP I, VERSTRAETENS V. Interactions of Al and related metals with membrane phospholipids: consequences on membrane physical properties[J]. Advances in Planar Lipid Bilayers and Liposomes, 2006, 4: 79-106.