CHENGQ M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2): 314-324.
[3]
MATHERONG. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266.
[4]
KRIGED. Two-dimensional weighted moving average trend surfaces for ore-evaluation[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66: 13-38.
[5]
HOULDINGS. Practical geostatistics: modeling and spatial analysis. Manual[M]. Berlin: Springer Science and Business Media, 2000.
[6]
MUGGLESTONEM A, RENSHAWE. Detection of geological lineations on aerial photographs using two-dimensional spectral analysis[J]. Computers and Geosciences, 1998, 24(8): 771-784.
[7]
AGTERBERGF P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1): 1-8.
[8]
AGTERBERGF. New applications of the model of de wijs in regional geochemistry[J]. Mathematical Geology, 2007, 39(1): 1-25.
[9]
AGTERBERGF P. Mixtures of multiplicative cascade models in geochemistry[J]. Nonlinear Processes in Geophysics, 2007, 14(3): 201-209.
[10]
AGTERBERGF P. Multifractal simulation of geochemical map patterns[M]// MERRIAM D F, DAVIS J C. Computer applications in the Earth sciences. Boston, MA: Springer US, 2001: 327-346.
[11]
GRUNSKYE C, KJARSGAARDB A. Classification of distinct eruptive phases of the diamondiferous Star kimberlite, Saskatchewan, Canada based on statistical treatment of whole rock geochemical analyses[J]. Applied Geochemistry, 2008, 23(12): 3321-3336.
[12]
HARRISJ R, GRUNSKYE C. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data[J]. Computers and Geosciences, 2015, 80: 9-25.
[13]
DAVISJ C, SAMPSONR J. Statistics and data analysis in geology[M]. New York: Wiley, 1986.
[14]
HUANGN E, WUZ H. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): e2007rg000228.
[15]
XIAOF, CHENJ G, AGTERBERGF, et al. Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu-Mo deposits in eastern Tianshan, China[J]. Journal of Geochemical Exploration, 2014, 145: 1-11.
REIMANNC, FILZMOSERP. Normal and lognormal data distribution in geochemistry: death of a myth. consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 2000, 39(9): 1001-1014.
[18]
JAMESL, DOUGLASC J, PAULE. Analyzing multivariate data[M]. Pacific Grove, CA, USA: Thomson Brooks/Cole, 2003.
[19]
CHENY Q, ZHAOB N, CHENC, et al. Identification of ore-finding targets using the anomaly components of ore-forming element associations extracted by SVD and PCA in the Jiaodong gold cluster area, Eastern China[J]. Ore Geology Reviews, 2022, 144: 104866.
CHENY Q, LIANGZ, ZHEN, L. Geochemical characteristics and zonation of primary halos of Pulang porphyry copper deposit, Northwestern Yunnan Province, Southwestern China[J]. Journal of China University of Geosciences, 2008, 19(4): 371-377.
BEHERAS, PANIGRAHIM K. Mineral prospectivity modelling using singularity mapping and multifractal analysis of stream sediment geochemical data from the auriferous Hutti-Maski schist belt, S. India[J]. Ore Geology Reviews, 2021, 131: 104029.
[24]
FREIRES L M, ULRYCHT J. Application of singular value decomposition to vertical seismic profiling[J]. Geophysics, 1988, 53(6): 778-785.
[25]
LIQ M. GIS-based multifractal/inversion methods for feature extraction and applications in anomaly identification for mineral exploration[D]. Toronto: York University, 2005.
WANGY J, LIS B, MAL Y, et al. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction[J]. Gondwana Research, 2015, 27(4): 1474-1486.
[28]
CHENY Q, ZHANGL N, ZHAOB B. Identification of the anomaly component using BEMD combined with PCA from element concentrations in the Tengchong tin belt, SW China[J]. Geoscience Frontiers, 2019, 10(4): 1561-1576.
[29]
GARDINERN J, SEARLEM P, MORLEYC K, et al. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: tectonic and metallogenic implications[J]. Gondwana Research, 2018, 62: 27-60.
[30]
GARDINERN J, SEARLEM P, MORLEYC K, et al. The closure of palaeo-Tethys in eastern Myanmar and northern Thailand: new insights from zircon U-Pb and Hf isotope data[J]. Gondwana Research, 2016, 39: 401-422.
[31]
MITCHELLA, CHUNGS L, OOT, et al. Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[J]. Journal of Asian Earth Sciences, 2012, 56: 1-23.
[32]
RIDDM F. East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation[J]. Journal of Asian Earth Sciences, 2015, 104: 160-174.
[33]
XUY G, YANGQ J, LANJ B, et al. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences, 2012, 53: 151-175.
[34]
MORLEYC K. Late Cretaceous-Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 2012, 115(1/2): 37-75.
[35]
CAOH W, ZHANGS T, LINJ Z, et al. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): regional tectonic implications[J]. Journal of Asian Earth Sciences, 2014, 81: 142-152.
AHRENSL H. The lognormal distribution of the elements (2)[J]. Geochimica et Cosmochimica Acta, 1954, 6(2/3): 121-131.
[39]
AHRENSL H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary)[J]. Geochimica et Cosmochimica Acta, 1954, 5(2): 49-73.
[40]
AGTERBERGF. Pareto-lognormal modeling of known and unknown metal resources[J]. Natural Resources Research, 2017, 26(1): 3-20.
[41]
AGTERBERGF. Aspects of regional and worldwide mineral resource prediction[J]. Journal of Earth Science, 2021, 32(2): 279-287.
[42]
AGTERBERGF P, CHENGQ M. Introduction to special issue on “fractals and multifractals”[J]. Computers and Geosciences, 1999, 25(9): 947-948.
[43]
ZUOR G, XIAQ L, WANGH C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211.
CARRANZAE J M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration, 2011, 110(2): 167-185.
[46]
CARRANZAE J M, LABORTEA G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm[J]. Ore Geology Reviews, 2015, 71: 777-787.
[47]
CARRANZAE J M, VANRUITENBEEK F J A, HECKERC, et al. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 374-387.
[48]
AITCHISONJ. The statistical analysis of compositional data[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1982, 44(2): 139-160.
[49]
AITCHISONJ, GREENACREM. Biplots of compositional data[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2002, 51(4): 375-392.
[50]
ZHENGA Y, CHENC, CHENY Q, et al. Application of SVD combined with PCA in delineation and evaluation of ore-prospecting targets in the Gejiu tin polymetallic cluster region, SW China[J]. Ore Geology Reviews, 2023, 160: 105571.
[51]
XIEX J, LIUD W, XIANGY C, et al. Geochemical blocks for predicting large ore deposits: concept and methodology[J]. Journal of Geochemical Exploration, 2004, 84(2): 77-91.