1. Ministry of Natural Resources Key Laboratory of Geochemical Exploration, Ministry of Natural Resources SinoProbe Laboratory, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, China
3. Department of Geology and Minerals, Ministry of Energy and Mines,Vientiane 01000, Laos
4. Guilin University of Technology, Guilin 541004, China
5. School of Earth and Resources, China University of Geosciences (Beijing), Beijing 100083, China
以地质成矿模式为核心,结合地质和地球化学等技术开展成矿有利信息定量提取是实现成矿预测工作的基础。前文通过对地球化学数据的处理,提取了两种不同的元素组合,构建了两个不同的成矿预测指标。基于此,本节进一步采用地理信息系统(geographic information system,GIS)空间分析对区域地层和构造等数据开展预测指标定量化提取,从而构建包含地质和地球化学的定量矿产预测模型。
ZAWK, MEFFRES, LAIC K, et al. Tectonics and metallogeny of mainland Southeast Asia: a review and contribution[J]. Gondwana Research, 2014, 26(1): 5-30.
GUOL N, DENGJ, HOUL, et al. Gold source and deposition in the sanakham gold deposit, SW Laos: constrains from textures, trace element geochemistry and in situ sulfur isotopes of pyrite[J]. Ore Geology Reviews, 2024, 167: 106003.
SHIM F, ZAWK, LIUSS, et al. Geochronology and petrogenesis of Carboniferous and Triassic volcanic rocks in NW Laos: implications for the tectonic evolution of the Loei fold belt[J]. Journal of Asian Earth Sciences, 2021, 208: 104661.
SHIM F, LINF C, FANW Y, et al. Zircon U-Pb ages and geochemistry of granitoids in the Truong Son terrane, Vietnam: tectonic and metallogenic implications[J]. Journal of Asian Earth Sciences, 2015, 101: 101-120.
SHENL J, SIRITONGKHAMN. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia[J]. China Geology, 2020, 3(1): 67-82.
[33]
LIUW L, WANGG W, CHENY Q, et al. The structural information and alteration information extraction and metallogenic prognosis in Laos area[J]. Procedia Environmental Sciences, 2011, 10: 386-391.
[34]
SANEMATSUK, MURAKAMIH, WATANABEY, et al. Enrichment of rare earth elements (REE) in graniticrocks and their weathered crusts in central and southern Laos[J]. Bulletin of the Geological Survey of Japan, 2009, 60(11/12): 527-558.
ZOUH J, HANR S, LIUM Q, et al. Geological, geophysical, and geochemical characteristics of the Ban Kiouchep Cu-Pb-Ag deposit and its exploration significance in Northern Laos[J]. Ore Geology Reviews, 2020, 124: 103603.
[39]
CARRANZAE J M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J]. Ore Geology Reviews, 2009, 35(3/4): 383-400.
[40]
CARRANZAE J M. Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields[J]. Natural Resources Research, 2017, 26(4): 379-410.
[41]
LIUY, CARRANZAE J M, XIAQ L. Developments in quantitative assessment and modeling of mineral resource potential: an overview[J]. Natural Resources Research, 2022, 31(4): 1825-1840.
[42]
WANGJ, ZUOR G, XIONGY H. Mapping mineral prospectivity via semi-supervised random forest[J]. Natural Resources Research, 2020, 29(1): 189-202.
XIONGY H, ZUOR G. GIS-based rare events logistic regression for mineral prospectivity mapping[J]. Computers & Geosciences, 2018, 111: 18-25.
[45]
XIAOF, WANGK Q, HOUW S, et al. Prospectivity mapping for porphyry Cu-Mo mineralization in the Eastern Tianshan, Xinjiang, Northwestern China[J]. Natural Resources Research, 2020, 29(1): 89-113.
[46]
GHEZELBASHR, MAGHSOUDIA, BIGDELIA, et al. Regional-scale mineralprospectivity mapping: support vector machines and an improved data-driven multi-criteria decision-making technique[J]. Natural Resources Research, 2021, 30(3): 1977-2005.
[47]
MAEPAF, SMITHR S, TESSEMAA. Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada[J]. Ore Geology Reviews, 2021, 130: 103968.
[48]
ZUOR G, CARRANZAE J M. Support vector machine: a tool for mapping mineral prospectivity[J]. Computers & Geosciences, 2011, 37(12): 1967-1975.
[49]
SUNG T, ZENGQ D, ZHOUJ X. Machine learning coupled with mineral geochemistry reveals the origin of oredeposits[J]. Ore Geology Reviews, 2022, 142: 104753.
[50]
CARRANZAE J M, SADEGHIM, BILLAYA. Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa)[J]. Ore Geology Reviews, 2015, 71: 703-718.
[51]
SUNT, CHENF, ZHONGL X, et al. GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, Eastern China[J]. Ore Geology Reviews, 2019, 109: 26-49.
[52]
ZHENGC J, YUANF, LUOX R, et al. Mineral prospectivity mapping based on support vector machine and random forest algorithm: a case study from Ashele copper-zinc deposit, Xinjiang, NW China[J]. Ore Geology Reviews, 2023, 159: 105567.
[53]
LIT, ZUOR G, ZHAOX F, et al. Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data[J]. Ore Geology Reviews, 2022, 142: 104693.
[54]
YANGF F, ZUOR G. Geologically constrained convolutional neural network for mineral prospectivity mapping[J]. Mathematical Geosciences, 2024, 56(8): 1605-1628.
[55]
LIUY, XIAQ L, CARRANZAE J M. Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China[J]. Journal of Geochemical Exploration, 2019, 197: 143-158.
[56]
ZHANGS, XIAOK Y, CARRANZAE J M, et al. Maximum entropy and random forest modeling of mineral potential: analysis of gold prospectivity in the Hezuo-Meiwu district, West Qinling Orogen, China[J]. Natural Resources Research, 2019, 28(3): 645-664.
[57]
CHENG X, LIUT Y, SUNJ S, et al. Gravity method for investigating the geological structures associated with W-Sn polymetallic deposits in the Nanling Range, China[J]. Journal of Applied Geophysics, 2015, 120: 14-25.
[58]
CHENY L. Mineral potential mapping with a restricted Boltzmann machine[J]. Ore Geology Reviews, 2015, 71: 749-760.
[59]
CHENY L, WUW. Mapping mineral prospectivity using an extreme learning machine regression[J]. Ore Geology Reviews, 2017, 80: 200-213.
[60]
ZUOR G. Geodata science-based mineral prospectivity mapping: a review[J]. Natural Resources Research, 2020, 29(6): 3415-3424.
[61]
ZUOR G, CARRANZAE J M. Machine learning-based mapping for mineral exploration[J]. Mathematical Geosciences, 2023, 55(7): 891-895.
BREIMANL. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[65]
XIANGJ, XIAOK Y, CARRANZAE J M, et al. 3D mineral prospectivity mapping with random forests: a case study of Tongling, Anhui, China[J]. Natural Resources Research, 2020, 29(1): 395-414.
[66]
ZHAOJ, CHIH Q, SHAOY Q, et al. Application of AdaBoost algorithms in Fe mineral prospectivity prediction: a case study in Hongyuntan-Chilongfeng mineral district, Xinjiang, China[J]. Natural Resources Research, 2022, 31(4): 2001-2022.
ZHANGZ W, SHUQ, WUC Q, et al. The endogenetic metallogeny of Northern Laos and its relation to the intermediate-felsic magmatism at different stages of the paleotethyan tectonics: a review and synthesis[J]. Ore Geology Reviews, 2020, 123: 103582.
[73]
KAMVONGT, KHINZAW, MEFFRES, et al. Adakites in the Truong Son and loei fold belts, Thailand and Laos: genesis and implications for geodynamics and metallogeny[J]. Gondwana Research, 2014, 26(1): 165-184.
LUY X, ZHANGB M, CHIQ H, et al. Continental-scale distribution of tungsten in catchment sediments throughout China: prospecting implications from the China geochemical baselines project[J]. Ore Geology Reviews, 2024, 167: 106021.
FAWAGREHK, GABERM M, ELYANE. Random forests: from early developments to recent advancements[J]. Systems Science & Control Engineering, 2014, 2(1): 602-609.
[92]
JAMESG, WITTEND, HASTIET, et al. An introduction to statistical learning: with applications in R[M/OL]. New York: Springer US, 2021.