老挝铜资源成矿规律与基于机器学习的远景预测
张必敏 , 王学求 , 周建 , 王玮 , 刘汉粮 , 刘东盛 , Sounthone LAOLO , Phomsylalai SOUKSAN , 谢淼 , 董春放 , 柳青青 , 鲁岳鑫 , 王浩楠 , 贺彬
地学前缘 ›› 2025, Vol. 32 ›› Issue (1) : 61 -77.
老挝铜资源成矿规律与基于机器学习的远景预测
Copper mineralization pattern and machine learning-based copper prospectivity prediction in Laos
老挝处于特提斯成矿域南东段,具有丰富的矿产资源,但其地质工作基础薄弱,厘定矿产资源成矿规律并开展远景区预测是老挝在重点区实现找矿突破的有效途径。老挝1∶1 000 000国家尺度地球化学填图由中老双方合作完成,为其矿产资源和环境评价提供了高质量的地球化学基础数据和图件。本文主要利用国家尺度地球化学填图数据,结合老挝已发现矿产成矿规律,利用机器学习技术,开展铜资源远景区预测。研究结果表明:(1)老挝铜矿床的形成明显受到构造-岩浆-沉积作用控制,铜矿床主要类型有斑岩型、夕卡岩型、热液型和砂岩型。(2)老挝全国水系沉积物中铜含量为1.20~459.00 μg/g,平均值为21.96 μg/g,中位值为16.50 μg/g,在7个三级大地构造单元中,长山地块和哀牢山—马江等3个缝合带的平均值高于其他几个构造单元,地球化学图显示铜在老挝分布不均匀,存在多个大面积分布的高背景区和异常区。(3)构建了包括单元素异常、矿化元素组合异常、指示中酸性岩体元素组合、控矿构造分布、碳酸盐岩和碎屑岩分布等要素的老挝铜矿多源信息定量信息预测模型。(4)利用随机森林成矿预测方法,共圈定9个成矿远景区,具有寻找斑岩型和夕卡岩型等类型铜矿找矿前景。
远景区预测 / 机器学习 / 铜成矿规律 / 地球化学填图 / 老挝
prospecting area prediction / machine learning / copper mineralization patterns / geochemical mapping / Laos
/
〈 |
|
〉 |