具体算法思路如下:(1)尖灭定义。在获取建模数据集后,借鉴GemPy的三维隐式势场建模方法处理断层问题的思路,首先需要明确定义建模数据集中出现地层尖灭的区域。这包括定义地层尖灭处的几何形状、地层尖灭点的属性和参数。通过给相应的地层控制点赋予“pinch-out”属性,并以地层尖灭点的深度值作为下一步中切割地层的阈值。(2)逻辑判断与属性分配。对于位于地层尖灭区域的模型控制点,通过比较其深度属性,确定其位于地层尖灭点上方还是下方,并相应地分配地层属性“formation”。在尖灭点上方,该点的地层属性取自上层地层模型;在尖灭点下方,该点的地层属性则取自下层地层模型。(3)布尔切割运算。在建模完成后,通过布尔取交集的运算(AND运算用于确定每个数据点是否同时满足尖灭点深度、尖灭区域xy阈值等多个条件;WHERE运算将尖灭点上下两个地层进行组合),实现在尖灭点处对上下两个地层模型进行精确地切割。上层模型中大于阈值的部分被移除(remove),将移除部分对应的属性值设为特定值NaN(Not a Number),而下层模型则覆盖了被移除部分。在尖灭点上方,保留了上层地层模型;在下方,保留了布尔切割后的下层地层。
ELMQVISTT, ANDERSSONE, MCPHEARSONT, et al. Urbanization in and for the Anthropocene[J]. Urban Sustainability, 2021, 1(1): 6.
[2]
郝卉. 城市地下空间发展现状与前景[J]. 砖瓦, 2021(11): 85-86.
[3]
XIEH, ZHANGY, CHENY, et al. A case study of development and utilization of urban underground space in Shenzhen and the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Tunnelling and Underground Space Technology, 2021, 107: 103651.
[4]
OSWALDC, RINNERC, ROBINSONA. Applications of 3D printing in physical geography education and urban visualization[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 2019, 54(4): 278-287.
[5]
OLIEROOKH K H, SCALZOR, KOHND, et al. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models[J]. Geoscience Frontiers, 2021, 12(1): 479-493.
JINGH, HANHANH, GUISENZ, et al. 3D geological modelling of superficial deposits in Beijing City[J]. Geology in China, 2019, 46(2): 244-254.
[8]
BIRCHC. New systems for geological modelling-black box or best practice?[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2014, 114(12): 993-1000.
[9]
COWANE J, BEATSONR K, FRIGHTW R, et al. Rapid geological modelling[C]//Applied structural geology for mineral exploration and mining, international symposium, Kalgoorlie, Australia: Kalgoorlie. 2002, 9: 23-25.
[10]
COWANE J, BEATSONR K, ROSSH J, et al. Practical implicit geological modelling[C]//Proceedings of the 5th international mining geology conference. Bendigoe: Australasian Institute of Mining and Metallurgy Melbourne, 2003, 8: 89-99.
[11]
VOLLGGERS A, CRUDENA R, AILLERESL, et al. Regional dome evolution and its control on ore-grade distribution: insights from 3D implicit modelling of the Navachab gold deposit, Namibia[J]. Ore Geology Reviews, 2015, 69: 268-284.
[12]
VONHARTEN J, DELA VARGA M, HILLIERM, et al. Informed local smoothing in 3D implicit geological modeling[J]. Minerals, 2021, 11(11): 1281.
ZHONGD, WANGL, LINB I, et al. Implicit modeling of complex orebody with constraints of geological rules[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2392-2399.
[16]
FRANKT, TERTOISA L, MALLETJ L. 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data[J]. Computers & Geosciences, 2007, 33(7): 932-943.
[17]
CUOMOS, GALLETTIA, GIUNTAG, et al. Reconstruction of implicit curves and surfaces via RBF interpolation[J]. Applied Numerical Mathematics, 2017, 116: 157-171.
[18]
SKALAV. RBF interpolation with CSRBF of large data sets[J]. Procedia Computer Science, 2017, 108: 2433-2437.
[19]
MACÊDOI, GOISJ P, VELHOL. Hermite radial basis function simplicits[C]//Proceedings of computer graphics forum. Oxford: Blackwell Publishing Ltd, 2011, 30(1): 27-42.
[20]
GUOJ, WUL, ZHOUW, et al. Section-constrained local geological interface dynamic updating method based on the HRBF surface[J]. Journal of Structural Geology, 2018, 107: 64-72.
[21]
FLEISHMANS, COHEN-ORD, SILVAC T. Robust moving least-squares fitting with sharp features[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 544-552.
[22]
CARRJ C, BEATSONR K, CHERRIEJ B, et al. Reconstruction and representation of 3D objects with radial basis functions[C]//Proceedings of the 28th annual conference on computer graphics and interactive techniques (SIGGRAPH’01). New York: Association for Computing Machinery, 2001: 67-76.
[23]
STOCHB, ANTHONISSENC J, MCCALLM J, et al. 3D implicit modeling of the Sishen Mine: new resolution of the geometry and origin of Fe mineralization[J]. Mineralium Deposita, 2018, 53(6): 835-853.
[24]
JONESM W, CHENM. A new approach to the construction of surfaces from contour data[C]//Proceedings of computer graphics forum. Edinburgh: Blackwell Science Ltd, 1994, 13(3): 75-84.
WUJ, SUNB. Discontinuous mechanical analysis of manifold element strain of rock slope based on open source Gempy[C]//E3S Web of conferences. Hangzhou: EDP Sciences, 2021, 248: 03084.
[29]
BEN-SHABATY, GOULDS. DeepFit: 3D surface fitting via neural network weighted least squares[C]//Computer Vision-ECCV 2020: 16th European conference. Glasgow: Springer International Publishing, 2020: 20-34.
[30]
SCHAAFA, VARGAM, WELLMANNF, et al. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1[J]. Geoscientific Model Development, 2021, 14(6): 3899-3913.
[31]
DELA VARGA M, SCHAAFA, WELLMANNF. GemPy 1.0: open-source stochastic geological modeling and inversion[J]. Geoscience Model Development, 2019, 12 (32): 1-32.
[32]
CHENG, ZHUJ, QIANGM, et al. Three-dimensional site characterization with borehole data: a case study of Suzhou area[J]. Engineering Geology, 2018, 234: 65-82.
RATAM, DOUAOUIA, LARIDM, et al. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria[J]. Theoretical and Applied Climatology, 2020, 141: 1009-1024.
[40]
GUOJ, WANGX, WANGJ, et al. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 2021, 284: 106047.
[41]
BORGHIA, RENARDP, FOURNIERL, et al. Stochastic fracture generation accounting for the stratification orientation in a folded environment based on an implicit geological model[J]. Engineering Geology, 2015, 187: 135-142.