本研究采用环境容量估算公式来计算和预测汕头市土壤重金属的静态环境容量、现存环境容量和动态环境容量,但该公式为通用计算公式,不同地区的环境条件、污染源和污染物种类有所不同,需根据具体地区的实际情况对公式进行调整与修正,因此使用该环境容量通用计算公式来估算研究区土壤环境容量,结果可能存在偏差,具有不确定性。此外,本研究采用的土壤临界值为土壤风险筛选值(GB 15618—2018)[17],尽管这个临界值在预测研究区的土壤环境容量方面相对合理,但采用统一的土壤临界值可能无法准确反映地区真实情况,在特定区域建立局部阈值同样至关重要,因此结果存在不确定性。其次,土壤重金属动态环境容量能够模拟土壤中重金属环境容量随年际的动态变化,为重金属污染提供预警。不同重金属种类和地区的 K 值存在差异,本研究参考前人的研究成果, 取K值为0.9进行预测,这可能会导致预测和评估重金属动态年际环境容量的结果存在不确定性。此外,土壤环境容量还受到多种复杂因素的影响,包括土壤性质、土壤类型、地质背景、不同土地利用类型和地形地貌等[3,58-59],这些都会对土壤重金属环境容量产生影响。同样,汕头市作为经济特区,其政策会根据国家政策方针及地方实际情况进行调整,而这些调整的政策将会导致区域内的人类活动发生变化,进而对汕头市土壤环境容量的动态变化产生影响,带来不确定性。总之,土壤重金属环境容量及其动态变化受许多因素影响,尤其是在经济快速发展的汕头市,这些不确定性因素将会对土壤环境容量的预测结果产生一定的影响。
MAJ Y, LEIK G, LIY, et al. Spatiotemporal simulation, early warning, and driving factors of soil heavy metal pollution in a typical industrial city in southeast China[J]. Stochastic Environmental Research and Risk Assessment, 2024, 38(1): 315-337.
GUANQ Y, WANGF F, XUC Q, et al. Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, Northwest China[J]. Chemosphere, 2018, 193: 189-197.
[12]
MENC, LIUR M, XUL B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388: 121763.
HERNANDEZL, PROBSTA, PROBSTJ L, et al. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination[J]. Science of the Total Environment, 2003, 312(1/2/3): 195-219.
[24]
SUTHERLANDR A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611-627.
[25]
KARIMINEZHAD M T, TABATABAIIS M, GHOLAMIA. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran[J]. Journal of Geochemical Exploration, 2015, 152: 91-109.
[26]
BURNSW A, MANKIEWICZP J, BENCEA E, et al. A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources[J]. Environmental Toxicology and Chemistry, 1997, 16(6): 1119-1131.
[27]
CARLONC, CRITTOA, MARCOMINIA, et al. Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools[J]. Environmental Pollution, 2001, 111(3): 417-427.
RATHAD S, SAHUB K. Source and distribution of metals in urban soil of Bombay, India, using multivariate statistical techniques[J]. Environmental Geology, 1993, 22(3): 276-285.
FACCHINELLIA, SACCHIE, MALLENL. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2001, 114(3): 313-324.
JINGF, CHENX M, YANGZ J, et al. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils[J]. Environmental Earth Sciences, 2018, 77(3): 104.
[44]
罗诗睫. 镍污染对人类健康的危害及其防治[J]. 化工管理, 2021(17): 19-20.
[45]
LINDSTRÖMM. Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes[J]. Water Air and Soil Pollution, 2001, 126: 363-383.