中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示

刘晓惠 ,  刘一珉 ,  丁林 ,  郭晓玉 ,  黄兴富 ,  李蕙琳 ,  高锐

地学前缘 ›› 2025, Vol. 32 ›› Issue (01) : 343 -366.

PDF (8119KB)
地学前缘 ›› 2025, Vol. 32 ›› Issue (01) : 343 -366. DOI: 10.13745/j.esf.sf.2024.4.60
“印度欧亚大陆碰撞及其远程效应”专栏之十一

中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示

作者信息 +

Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco

Author information +
文章历史 +
PDF (8313K)

摘要

拉萨地体位于青藏高原南部,是全球地壳厚度最大的区域之一。然而,拉萨地体地壳增厚的时间和过程仍存在一定争议。锆石的微量元素特征受控于锆石与其他微量元素载体矿物之间的共生关系,即不同矿物的分配系数不同,因此,锆石微量元素可用于定量重建地壳厚度。本研究对来自中拉萨地体当惹雍措地区的岩浆岩和沉积岩中的锆石开展了U-Pb年代学和微量元素地球化学研究。利用锆石的Eu异常对地壳厚度进行定量重建,结果显示,中拉萨地体在侏罗纪至新近纪期间,经历了两次地壳减薄(150~130和85~65 Ma)和两次地壳增厚(130~85和65~15 Ma)事件。在150~130 Ma期间,中拉萨地体地壳减薄主要与班公湖—怒江洋的板片回撤有关。在130~85 Ma期间,由于新特提斯洋向北俯冲和班公湖—怒江洋向南俯冲,中拉萨地体发生了地壳增厚。在85~65 Ma期间,新特提斯洋的板片回撤和弧后拉张导致中拉萨地体再次发生地壳减薄。在65~15 Ma,印度与亚欧板块的碰撞和后续挤压作用,导致中拉萨地体地壳再次加厚。

Abstract

The Lhasa terrane is located in the southern part of the Tibetan Plateau and is one of the regions with the greatest crustal thickness globally. However, the timing and process of crustal thickening in the Lhasa terrane remain debated. Zircon trace element characteristics are controlled by the co-existing relationships between zircon and other trace element carrier minerals, meaning different minerals have varying partition coefficients, thus zircon trace elements can be used to quantitatively reconstruct crustal thickness. This study conducted U-Pb geochronological and trace element geochemical research on zircons from igneous and sedimentary rocks in the Dangra Yongcuo area of the central Lhasa terrane. Using zircon europium anomalies to quantitatively reconstruct crustal thickness, the results reveal that the central Lhasa terrane experienced two crustal thinning events (150-130 Ma and 85-65 Ma) and two crustal thickening events (130-85 Ma and 65-15 Ma) during the Jurassic to Neogene periods. During 150-130 Ma, crustal thinning in the central Lhasa terrane was primarily related to slab retreat of the Bangong-Nujiang Ocean. Between 130-85 Ma, the central Lhasa terrane underwent crustal thickening due to northward subduction of the Neo-Tethys Ocean and southward subduction of the Bangong-Nujiang Ocean. During 85-65 Ma, slab retreat of the Neo-Tethys Ocean and back-arc extension led to another crustal thinning event. From 65-15 Ma, collision and subsequent compression between the Indian and Eurasian plates caused the central Lhasa terrane to thicken again.

关键词

青藏高原 / 中拉萨地体 / 地壳厚度 / 锆石U-Pb年龄 / 锆石微量元素

Key words

Tibetan Plateau / central Lhasa terrane / crustal thickness / zircon U-Pb age / zircon trace elements

引用本文

引用格式 ▾
刘晓惠,刘一珉,丁林,郭晓玉,黄兴富,李蕙琳,高锐. 中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示[J]. 地学前缘, 2025, 32(01): 343-366 DOI:10.13745/j.esf.sf.2024.4.60

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

青藏高原南部是全球大陆地壳最厚的地区之一,地壳厚度在60~80 km之间[1],该地区深受新特提斯洋板块和印度大陆板块间汇聚作用的影响,也是新生代最重要的陆陆碰撞区域之一[2]。根据前人发表的地震波速度数据,青藏高原南部地区下地壳显示出低地震波速度特征(Vp<6.6 km/s,Vs<4.25 km/s)[3-4],表明其地壳物质组成以中性至长英质组分为主[5]。值得注意的是,在全球的碰撞造山带中普遍发现有中性至长英质岩浆岩,这为了解大陆地壳的形成和演化以及洋陆转换的地球动力学机制提供了重要线索。此外,含有这些岩浆岩碎屑物质的沉积岩同样保留了相应的重要地质信息。

青藏高原南部经历了长期的地质演化和多阶段的地壳厚度变化,其演变历史在相关岩浆岩和沉积岩中均有所记录[6-7]。拉萨地体位于青藏高原的最南端,其南以雅鲁藏布江缝合带(YZSZ)与喜马拉雅造山带相连,北以班公湖—怒江缝合带(BNSZ)与羌塘地体相接(图1a)。拉萨地体因其构造位置的特殊性,可为深入理解青藏高原南部地壳演化过程和地球动力学机制提供重要信息。

前人对不同地质背景与构造体系下形成的岩石及其地球化学特征研究显示,全岩地球化学数据与地壳厚度之间具有一定关系,并且已建立起二者之间可靠的经验公式[8-11],因此,全岩地球化学性质可为地球岩石圈的动力学演化过程提供宝贵见解。特别是在中酸性岩浆岩中,其锆石的Eu异常与全岩La/Yb比率呈正比关系,因而可用于定量恢复地质历史时期的地壳厚度变化[12-14]。拉萨地体广泛分布着含有中性至长英质成分以及不同年龄的岩浆岩,利用此类岩浆岩的地球化学特性,可定量计算地壳厚度[13,15-17]。本研究对中拉萨地体当惹雍措地区岩浆岩和沉积岩的锆石开展了U-Pb年代学和微量元素地球化学分析,定量重建中拉萨地体的地壳厚度,恢复中拉萨地体约150 Ma以来的地壳厚度变化过程。

1 地质背景

拉萨地体位于青藏高原南部,南以雅鲁藏布江缝合带为界,北至班公湖—怒江缝合带(图1a)。拉萨地体进一步被洛巴堆—米拉山断裂(LMF)和狮泉河—纳木错蛇绿混杂岩带(SNMZ)分割成3个不同的次级地体,即南拉萨地体、中拉萨地体和北拉萨地体[18-19](图1b)。南拉萨地体的主要特点是广泛出露有晚三叠世至新生代的冈底斯花岗岩岩基、白垩纪日喀则弧前盆地火山序列和古近纪林子宗火山序列[19-24]。北拉萨地体以三叠纪—侏罗纪地层为主,还广泛出露有白垩纪沉积序列[25]和早白垩世火山岩[26-28]。深地震反射剖面和同位素地球化学数据显示,北拉萨地体和南拉萨地体均存在新生地壳[29-30],中拉萨地体则被认为是一个具有前寒武纪结晶基底的微陆块[18,31-32]。中拉萨地体的古老结晶基底被变质程度较低的石炭纪变质沉积岩所覆盖,之上的地层包括二叠纪变质灰岩、三叠纪至侏罗纪灰岩地层、侏罗纪至早白垩世花岗岩和地区广泛出露的下白垩统则弄群火山沉积岩[28,33-35]

当惹雍措地处中拉萨地体中部(图1b),构造上位于当惹雍措裂谷系的北部,以南北走向的高角度正断层为界[36]。该地区与东西向伸展相关的南北走向岩脉展现出18~13 Ma的年龄[37];与南北向断层系相关的钾质-超钾质火山岩的年龄范围为23~8 Ma[38-41],二者均显示当惹雍措地区发育了一系列适应青藏高原南部区域性东西向伸展作用的构造作用和岩浆活动[37,39,42-46]

本文研究区位于当惹雍措的东南部(图1c)。研究区正断层下盘出露的岩石以未变形或弱变形的花岗岩为主。根据K-Ar测年,研究区最北端花岗岩侵入体的年龄被限定为45.3 Ma(图1c;2000—2002年江西省地质调查局1∶250 000地质图和地调报告)。当惹雍措南岸花岗岩类的锆石U-Pb年代学结果约为87 Ma[36]。本研究区出露的地层有晚侏罗世—早白垩世扎列拿组(J3-K1z)、早白垩世郎穷组(K1lq)、晚白垩世竟柱山组(K2j)、古新世典中组(E1d)、始新世年波组(E2n)和新近纪鱼鳞山组(Ny)(图1c)。其中,J3-K1z和K1lq属于则弄群,则弄群在中拉萨地体上广泛出露,由不整合覆盖在二叠纪石灰岩之上的火山岩组成,区域性地记录了中拉萨地体发生大规模构造作用和火山活动的阶段[47-48]。K2j为陆相沉积,其沉积环境主要为冲积扇、河流和湖泊,以含砾岩、砂岩和泥岩的红层为特征[27,49]。E1d和E2n均属于林子宗群,林子宗群被定义为一套酸性火山碎屑岩与河流相沉积岩的岩石组合[22,24]。Ny是一套与白榴石响岩相关的碱性火山岩序列,被称为青藏高原上最年轻的火山岩组合之一,是青藏高原隆升过程中发生碱性钾质火山作用的产物[50-51]

2 分析方法与分析结果

2.1 分析方法

本文研究所涉及的样品为采自当惹雍措东南部的10个岩浆岩和6个砂岩(采样具体位置见表1),主要分析方法为锆石U-Pb年代学和微量元素地球化学分析。在锆石颗粒的挑选过程中,首先采用传统的碎样和研磨方法对岩石样品进行破碎和研磨,之后利用重液和磁选仪进行矿物分离,最后在镜下对锆石矿物进行挑选。选取干净的锆石颗粒进行制靶,首先将锆石颗粒放置在环氧树脂和凝固剂的混合物表层,待环氧树脂混合物固结后进行打磨抛光,去除锆石晶体外缘以避免铅丢失,最后抛光至出现大部分锆石颗粒的最大横截面。在分析之前先用透射光和反射光对锆石分别进行观测检查,之后使用JEOL JXA-8100扫描电子显微镜拍摄锆石的阴极发光图像,观察锆石颗粒的形态及环带等特征并选择测试分析点的具体位置。

本研究所涉及的样品测试分析工作均完成于中国科学院青藏高原研究所青藏高原地球系统与资源环境重点实验室,所用仪器为激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS),其激光剥蚀系统为美国New Wave公司的UP193FX型193 nm ArF准分子系统,ICP-MS型号为Agilent 7500a。锆石U-Pb年代学和微量元素分析测试采用束斑直径为35 μm,频率为8 Hz,能量为8~10 J/cm2,利用法拉第杯对238U、232Th、208Pb和206Pb进行分析检测,利用离子计数通道对204Pb进行分析检测。测试标样为锆石标准Plesovice(206Pb/238U年龄为(337±0.37) Ma)[52]、锆石标准91500(207Pb/206Pb年龄为(1 064 ± 0.3) Ma)[53]和玻璃标准NIST SRM 610[54],以Plesovice标样作为外标针对基体校正未知点的年龄,以29Si作为内标元素,以91500标样作为未知样品以监测实验的可靠性。锆石的同位素比值和元素含量计算采用GLITTER 4.0程序[55]进行。对于206Pb/238U和206Pb/207Pb年龄,实验结果的测量误差一般为1%~2%(2σ)。使用ComPbCon#3.17对锆石测试结果进行普通铅校正[56]

2.2 分析结果

2.2.1 锆石U-Pb年代学

本研究分析了6个砂岩样品中的600颗锆石,样品号分别为TY12、TY13、TY14、TY15、TY18和TY20。这些碎屑锆石多数呈现良好的原始晶体形态,呈自形至半自形长柱状,其阴极发光图像显示发育有良好的振荡环带。其中,581个锆石颗粒的年龄协和度在90%~110%,其相对应的U-Pb年龄为谐和年龄(表2)。本研究针对2 000~0 Ma年龄区间的碎屑锆石进行投图(图2)。每个砂岩样品的碎屑锆石年龄分布曲线图均显示,U-Pb年龄集中在200~0 Ma,且具有3组相似的主要年龄分布区间,分别为65~40、105~65和150~105 Ma(图2a-f)。

2.2.2 锆石微量元素地球化学

本研究对10个岩浆岩和6个砂岩样品中共计1 060个锆石颗粒进行了微量元素地球化学分析和年龄测定,仅选取其中具有谐和年龄的1 003个锆石颗粒,用于后续讨论。由于锆石的晶格中几乎不能赋存La,因此本研究剔除了La 含量>0.1×10-6的锆石微量元素数据,以消除矿物包裹体和蚀变的影响,并删除了La含量为负值的异常数据[57]。变质锆石的lg(Th/U)<-1,这是由于变质锆石是在高U含量的变质流体环境下形成的[14,58-59]。本研究中的锆石微量元素数据中仅有9个数据Th/U值<0.1,表明本研究中的绝大多数锆石都是岩浆锆石,与阴极发光图像显示的结果一致。通过上述数据筛选条件过滤后,本研究最终获得353个有效的锆石微量元素地球化学数据。

Grimes等[60-61]和Wang等[62]基于锆石微量元素的含量和比值构建了区分锆石形成的构造背景的判别图解,用于示踪锆石的构造背景、岩浆源区和源岩类型等岩浆演化信息。本研究将U-Pb年龄小于200 Ma的锆石微量元素数据(n=284,表3)按照此类图解进行投图分析(图3)。在U/Yb-Hf(图3a)和U-Yb(图3b)洋陆壳判别图解中,所有分析数据都落入陆壳锆石结晶范围内。在U/Yb-Nb/Yb(图3c)构造环境判别图解中,绝大多数分析数据都落入大陆弧构造环境范围内,且位于壳源锆石范围内。I型花岗岩的特点是具有相对较高的(Nb/Pb)N值以及不显著的Eu异常[62],因此(Nb/Pb)N和Eu/Eu*(球粒陨石标准化,Eu/Eu*=Eu/ ( S m × G d ))的图解可用于识别锆石的源岩类型,本研究的锆石以来自I型花岗岩的岩浆锆石为主(图3d[63])。

2.2.3 锆石微量元素计算地壳厚度

岩浆锆石的微量元素长期以来被用于定性或定量计算地质历史时期地壳和岩石圈厚度变化。本研究分析的绝大多数锆石表现出重稀土元素(HREE)明显富集,轻稀土元素(LREE)相对亏损,∑LREE/∑HREE值大多处于0.1和0.01之间(图4),且显示明显的正Ce异常和负Eu异常,指示本研究中的锆石为未受后期改造的岩浆锆石[64-65]

根据前人对锆石Eu异常随地壳厚度变化的研究[14,66-67],形成于高硅岩浆(SiO2含量>75%)中的锆石,其Eu异常无法提供可靠的地壳厚度信息,这是由于高硅熔体在地壳浅部会发生分异作用,因此Eu异常可能因为显著的岩浆分异而变得非常复杂。本研究中的碎屑锆石微量元素数据显示,样品平均Hf含量>8×10-3,平均Nb含量<17×10-5,指示这些锆石来自于SiO2含量低于75%的花岗岩熔体[64]。这与当惹雍措地区的岩浆岩SiO2含量(58%~70%之间)一致[68-70]。在I和S型的中性至长英质岩浆岩(55%<SiO2含量<75%)中,锆石的Eu异常与全岩La/Yb值之间存在明显的正相关性,因此可以利用其Eu异常定量计算地壳厚度[12-14]。本研究中,U-Pb年龄小于200 Ma的锆石的源岩以I型花岗岩为主(图3d),因此采用Tang等[14]发表的经验公式,根据岩浆锆石和碎屑锆石中的Eu异常(Eu/Eu*)定量计算地壳厚度(表3):

z=(84.2±9.2)×Eu/Eu*锆石+(24.5±3.3)

式中:z为地壳厚度,km。

计算结果表明,在150~130 Ma期间,中拉萨地体的地壳厚度自约52 km减薄至约42 km;在130~85 Ma,其地壳厚度从约42 km加厚至约60 km;在85~65 Ma期间,其地壳厚度再次从约60 km减薄至约50 km;在65~15 Ma期间,其地壳厚度自约50 km再次增厚至约80 km(图5a)。由于晚侏罗世之前和中中新世以来的锆石地球化学数据有限,本研究未对这两个期间的地壳厚度定量计算。此外,锆石的La/Yb、Sm/Yb、Ce/Y和Dy/Yb值可用于定性估算地壳厚度,即比值越高代表地壳厚度越厚,本研究的锆石微量元素数据显示,锆石的La/Yb、Ce/Y、Sm/Yb和Dy/Yb的变化趋势与Eu异常定量重建的地壳厚度变化趋势一致(图4)。

3 讨论

本研究定量重建了中拉萨地体从晚侏罗世至中中新世的地壳厚度变化历史(图5[14,71])。研究结果显示,中拉萨地体在150~130和85~65 Ma发生了两期地壳减薄(图5b,d),在130~85和65~15 Ma发生了两期地壳加厚(图5c,e)。中拉萨地体当惹雍措地区现今的地壳平均厚度约为70 km[72],因此,本研究暗示中拉萨地壳厚度从15 Ma至今,可能减薄了约10 km。

3.1 150~130 Ma地壳减薄

中二叠世晚期(约263 Ma),班公湖—怒江洋的大洋板片开始向南俯冲至拉萨地体之下[19],这一构造事件得到了拉萨地体中生代大量岩浆作用的证据支持[28,73-75]。班公湖—怒江洋的持续南向俯冲可能会导致在某个时期班公湖—怒江洋的大洋板片发生北向回撤[19]。前人发表的岩浆岩地球化学证据表明,这次大洋板片由前进到回撤的构造转换时间为150 Ma[76]。弧后盆地通常是俯冲板片回撤构造环境下的产物[77]。班公湖—怒江洋向南俯冲过程中的板片回撤,导致中拉萨地体发育南北向伸展作用,进而促使永珠弧后盆地打开[76,78]。伴随此期南北向伸展作用,中拉萨地体自150 Ma左右开始发生地壳减薄,锆石Eu异常重建的地壳厚度从约52 km减小至约42 km(图5a,b)。

除岩浆岩全岩La/Yb和锆石Eu异常外,岩浆岩全岩Sr/Y也与岩浆源区深度和地壳厚度正相关[13,79]。本研究得到的150~130 Ma中拉萨地体地壳减薄的结论与已发表的全岩地球化学数据结果一致,即在此时期,中拉萨地体岩浆岩Sr/Y出现降低的趋势[76]。此外,中拉萨地体晚侏罗世至早白垩世花岗岩锆石Hf同位素数据显示,145~130 Ma岩浆岩的锆石具有较高的εHf(t)[80],指示幔源岩浆占比较高和岩浆活动与板片回撤而产生的软流圈地幔上涌有关,这同样支持“中拉萨地体在该时期处于伸展的构造环境”这一观点。

3.2 130~85 Ma地壳增厚

海相地层的消失、早期海洋沉积与上覆陆相沉积不整合面的出现和岩浆岩地球化学特征显示,班公湖-怒江洋最终闭合于130~120 Ma[27,49,81]。随后,拉萨地体与羌塘地体发生陆陆碰撞,导致中拉萨地体和北拉萨地体发生区域性的岩浆活动和上地壳缩短[26,82],并导致该地区在130~85 Ma期间发生地壳增厚,锆石Eu异常重建的地壳厚度从约42 km增加至约60 km(图5a,c)。

随着地壳厚度的增加,中拉萨地体部分地区在这一时期发育了古地形的生长并伴有地表的初始隆升[82-83],这符合地壳均衡理论的预测。此外,中拉萨地体在白垩纪发生了快速剥蚀事件,向拉萨地体南部的日喀则弧前盆地提供了大量碎屑物质[84]。并且,中拉萨地体出露的白垩纪埃达克质岩石具有正的全岩εNd(t)和锆石εHf(t),同时Y含量从早白垩世到晚白垩世逐渐减低,证实了增厚地壳的存在[85]。中拉萨地体130~85 Ma的地壳增厚,在早期与班公湖—怒江洋大洋板块断离相关的岩浆上涌和底侵有关[85-86],在晚期与中拉萨地体和北拉萨地体的构造缩短有关[26]

3.3 85~65 Ma地壳减薄

自晚三叠世以来,新特提斯洋板片向北持续俯冲至拉萨地体之下,并在大约90 Ma时发生了板片回撤[6,87-90]。新特提斯洋板片在这一期的向南回撤导致拉萨地体南北向伸展作用和陆内弧后盆地的发育[6,88-91],因此中拉萨地体在85~65 Ma发生地壳减薄,锆石Eu异常重建的地壳厚度从约60 km减薄至约50 km(图5a,d)。

中拉萨地体晚白垩世埃达克岩和中基性岩包体的地球化学特征显示,这些均来自古老下地壳和流体交代的富集地幔的混合,同时基性包体的微量元素特征与板内玄武岩表现出较强的亲和性[88]。南拉萨地体晚白垩世辉绿岩的微量元素地球化学研究表明,其特征与陆内弧后盆地玄武岩类似,且来源于软流圈和大陆地幔岩石圈的混合作用[89]。此外,拉萨地体100~90 Ma的岩浆活动随时间整体向南部迁移,暗示新特提斯洋的板片回撤引发了中拉萨地体和南拉萨地体晚白垩世岩浆活动的广泛发育[6,88-90]。此时,中拉萨地体经历了构造体制的改变,从地壳增厚转换为地壳减薄[88,92-93]。因此,新特提斯洋板片在晚白垩世板片回撤,导致中拉萨地体在85~65 Ma期间发生地壳减薄。

3.4 65~15 Ma地壳增厚

前人已经对印度与欧亚大陆的初始碰撞开展过大量研究,将印度—拉萨地体的初始碰撞时间限定在65~50 Ma[94-99]。自始新世以来,伴随印度—欧亚大陆间持续的碰撞作用和印度岩石圈持续向北的平板俯冲,青藏高原南部发生不可避免的挤压变形,导致中拉萨地体在65~15 Ma期间发生上地壳缩短和地壳增厚,锆石Eu异常重建的地壳厚度自约50 km增厚至约80 km(图5a,e)。

拉萨地体在65~45 Ma经历了显著的岩浆输入[100],这是由于持续北向俯冲的新特提斯洋板片发生了南向回撤,并在随后发生了板片断离,代表大洋俯冲到大陆俯冲的构造转变。中拉萨地体古新世假白榴响岩脉的Sr-Nd同位素明显亏损于同地区的中新世超钾质岩,这说明俯冲的印度大陆岩石圈持续添加进拉萨地体岩石圈地幔之中[101]。与此相关的强烈的岩浆作用导致中拉萨地体在65~45 Ma期间发生地壳增厚和地表隆升[100,102]

3.5 15~0 Ma地壳减薄

锆石Eu异常重建的当惹雍措地区中新世中期地壳厚度约为80 km(图5a),这比该地区现代平均地壳厚度70 km厚约10 km[71],表明该地区在新近纪期间发生了地壳减薄。这一阶段的地壳减薄得到了该时期中拉萨地体发生强烈岩浆作用和南北走向伸展构造作用的证据支持,钾质和超钾质岩的年代学研究显示伸展作用开始于23~13 Ma[39,102-103]。低温热年代学研究表明,当惹雍措地区的正断层活动时间始于14 Ma[36,104]。结合前人对该地区的地球化学与大地电磁研究[103,105],热地幔物质上涌导致中下地壳发生热膨胀变形,促使上地壳东西向伸展,最终形成当惹雍措地堑。此阶段的地壳减薄和东西向伸展作用,在喜马拉雅造山带、拉萨地体和羌塘地体均有所记录,被认为与造山带发生大规模重力垮塌、俯冲印度板块的撕裂和印度大陆岩石圈的俯冲作用有关[106-107]

4 结论

根据拉萨中部当惹雍措地区锆石U-Pb年代学和微量元素地球化学新数据,本研究得到以下结论。

(1)拉萨中部当惹雍措地区的锆石U-Pb年龄处于侏罗纪至新近纪年代范围,锆石微量元素数据指示在150~130和85~65 Ma,中拉萨地体发生地壳厚度减薄;在130~85和65~15 Ma,中拉萨地体发生地壳增厚。

(2)中拉萨地体在侏罗纪晚期至新近纪期间发生的地壳增厚主要是由大洋板块的俯冲作用和大陆岩石圈的碰撞作用所致,而地壳减薄主要与俯冲的大洋板块发生板片回撤有关。

参考文献

[1]

KIND R, NI J, ZHAO W J, et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet[J]. Science, 1996, 274(5293): 1692-1694.

[2]

YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.

[3]

GALVÉ A, JIANG M, HIRN A, et al. Explosion seismic P and S velocity and attenuation constraints on the lower crust of the north-central Tibetan Plateau, and comparison with the Tethyan Himalayas: implications on composition, mineralogy, temperature, and tectonic evolution[J]. Tectonophysics, 2006, 412(3/4): 141-157.

[4]

YANG Y J, RITZWOLLER M H, ZHENG Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 2011JB008810.

[5]

ZENG Y C, DUCEA M N, XU J F, et al. Negligible surface uplift following foundering of thickened central Tibetan lower crust[J]. Geology, 2021, 49(1): 45-50.

[6]

KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254.

[7]

SUNDELL K E, LASKOWSKI A K, HOWLETT C, et al. Episodic Late Cretaceous to Neogene crustal thickness variation in southern Tibet[J]. Terra Nova, 2024, 36(1): 45-52.

[8]

HAWKESWORTH C J, VOLLMER R. Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics[J]. Contributions to Mineralogy and Petrology, 1979, 69(2): 151-165.

[9]

LUFFI P, DUCEA M N. Chemical mohometry: assessing crustal thickness of ancient orogens using geochemical and isotopic data[J]. Reviews of Geophysics, 2022, 60(2): e2021rg000753.

[10]

MANTLE G W, COLLINS W J. Quantifying crustal thickness variations in evolving orogens: correlation between arc basalt composition and Moho depth[J]. Geology, 2008, 36(1): 87-90.

[11]

TAYLOR S R, MCLENNAN S M, ARMSTRONG R L, et al. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1981, 301(1461): 381-399.

[12]

KAY S M, MPODOZIS C. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab[J]. Journal of South American Earth Sciences, 2002, 15(1): 39-57.

[13]

PROFETA L, DUCEA M N, CHAPMAN J B, et al. Quantifying crustal thickness over time in magmatic arcs[J]. Scientific Reports, 2015, 5: 17786.

[14]

TANG M, JI W Q, CHU X, et al. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons[J]. Geology, 2021, 49(1): 76-80.

[15]

CHAPMAN J B, DUCEA M N, KAPP P, et al. Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens[J]. Gondwana Research, 2017, 48: 189-204.

[16]

CHAPMAN J B, DUCEA M N, DECELLES P G, et al. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American cordillera[J]. Geology, 2015, 43(10): 919-922.

[17]

CHIARADIA M. Crustal thickness control on Sr/Y signatures of recent arc magmas: an earth scale perspective[J]. Scientific Reports, 2015, 5: 8115.

[18]

ZHU D C, ZHAO Z D, NIU Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.

[19]

ZHU D C, ZHAO Z D, NIU Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1): 241-255.

[20]

COULON C, MALUSKI H, BOLLINGER C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302.

[21]

DING L, LAI Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Chinese Science Bulletin, 2003, 48(15): 1604-1610.

[22]

HE S D, KAPP P, DECELLES P G, et al. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet[J]. Tectonophysics, 2007, 433(1/2/3/4): 15-37.

[23]

JI W Q, WU F Y, CHUNG S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4): 229-245.

[24]

ZHU D C, WANG Q, ZHAO Z D, et al. Magmatic record of India-Asia collision[J]. Scientific Reports, 2015, 5: 14289.

[25]

潘桂棠, 莫宣学, 侯增谦, 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.

[26]

KAPP P, DECELLES P G, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.

[27]

LAI W, HU X M, GARZANTI E, et al. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision[J]. Gondwana Research, 2019, 73: 136-152.

[28]

ZHU D C, MO X X, NIU Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312.

[29]

HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.

[30]

LU Z W, GUO X Y, GAO R, et al. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nature Communications, 2022, 13: 3143.

[31]

ALLÉGRE C J, COURTILLOT V, TAPPONNIER P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.

[32]

DEWEY J F, BURKE K C A. Tibetan, variscan, and Precambrian basement reactivation: products of continental collision[J]. The Journal of Geology, 1973, 81(6): 683-692.

[33]

LEEDER M R, SMITH A B, JIXIANG Y, et al. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1988, 327(1594): 107-143.

[34]

WANG W, ZHAI Q G, HU P Y, et al. Simultaneous growth and reworking of the Lhasa basement: a case study from Early Cretaceous magmatism in the north-central Tibet[J]. Lithos, 2021, 380: 105863.

[35]

YIN J, XU J, LIU C, et al. The Tibetan Plateau: regional stratigraphic context and previous work[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1988, 327(1594): 5-52.

[36]

WOLFF R, HETZEL R, DUNKL I, et al. High-angle normal faulting at the tangra yumco graben (southern Tibet) since -15 Ma[J]. The Journal of Geology, 2019, 127(1): 15-36.

[37]

WILLIAMS H, TURNER S, KELLEY S, et al. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342.

[38]

DING L. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865.

[39]

丁林, 岳雅慧, 蔡福龙, 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006, 80(9): 1252-1261.

[40]

曹圣华, 李德威, 余忠珍, 西藏冈底斯当惹雍错—许如错南北向地堑的特征及成因[J]. 地球科学: 中国地质大学学报, 2009, 34(6): 914-920.

[41]

赵志丹, 莫宣学, NOMADE S, 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006, 22(4): 787-794.

[42]

BLISNIUK P M, HACKER B R, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6847): 628-632.

[43]

COLEMAN M, HODGES K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517): 49-52.

[44]

KAPP P, TAYLOR M, STOCKLI D, et al. Development of active low-angle normal fault systems during orogenic collapse: insight from Tibet[J]. Geology, 2008, 36(4): 336.

[45]

ZHANG W L, ZHANG D W, FANG X M, et al. New paleomagnetic constraints on rift basin evolution in the northern Himalaya mountains[J]. Gondwana Research, 2020, 77: 98-110.

[46]

陈建林, 许继峰, 王保弟, 青藏高原拉萨地块新生代超钾质岩与南北向地堑成因关系[J]. 岩石矿物学杂志, 2010, 29(4): 341-354.

[47]

HU X M, MA A L, XUE W W, et al. Exploring a lost ocean in the Tibetan Plateau: birth, growth, and demise of the bangong-Nujiang ocean[J]. Earth-Science Reviews, 2022, 229: 104031.

[48]

ZHU D C, LI S M, CAWOOD P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.

[49]

ZHU Z C, ZHAI Q G, HU P Y, et al. Closure of the bangong-Nujiang Tethyan Ocean in the central Tibet: results from the provenance of the duoni formation[J]. Journal of Sedimentary Research, 2019, 89(10): 1039-1054.

[50]

丁林, 周勇, 张进江, 藏北鱼鳞山新生代火山岩及风化壳复合堆积物的组成和时代[J]. 科学通报, 2000, 45(14): 1475-1481.

[51]

李才, 朱志勇, 迟效国. 藏北改则地区鱼鳞山组火山岩同位素年代学[J]. 地质通报, 2002, 21(11): 732-734.

[52]

SLÁMA J, KOŠLER J, CONDON D J, et al. Plešovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.

[53]

WIEDENBECK M, ALLÉ P, CORFU F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23.

[54]

PEARCE N J G, PERKINS W T, WESTGATE J A, et al. A compilation of new and published major and trace element data for NIST srm 610 and NIST srm 612 glass reference materials[J]. Geostandards Newsletter, 1997, 21(1): 115-144.

[55]

GRIFFIN W l, POWELL W, PEARSON N J, et al. GLITTER: data reduction software for laser ablation ICP-MS[M]// SYLVESTER P. Laser Ablation-ICP-MS in the Earth sciences: current practices and outstanding issues (short course). Canada: Mineralogical Association, 2008: 204-207.

[56]

ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

[57]

ZOU X Y, QIN K Z, HAN X L, et al. Insight into zircon REE oxy-barometers: a lattice strain model perspective[J]. Earth and Planetary Science Letters, 2019, 506: 87-96.

[58]

HOSKIN P W O, SCHALTEGGER U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.

[59]

RUBATTO D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1/2): 123-138.

[60]

GRIMES C B, WOODEN J L, CHEADLE M J, et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 170(5): 46.

[61]

GRIMES C B, JOHN B E, KELEMEN P B, et al. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646.

[62]

WANG Q, ZHU D C, ZHAO Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66.

[63]

SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1): 313-345.

[64]

BELOUSOVA E, GRIFFIN W, O’REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[65]

HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.

[66]

CARRAPA B, DECELLES P G, DUCEA M N, et al. Estimates of paleo-crustal thickness at cerro Aconcagua (southern central Andes) from detrital proxy-records: implications for models of continental arc evolution[J]. Earth and Planetary Science Letters, 2022, 585: 117526.

[67]

SUNDELL K E, GEORGE S W M, CARRAPA B, et al. Crustal thickening of the northern central Andean Plateau inferred from trace elements in zircon[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096443.

[68]

XU Q, ZENG L S, GAO L E. Early Miocene (21-23 Ma) high Sr/Y volcanic field in the Gangdese batholith, southern Tibet[J]. Lithos, 2022, 428: 106807.

[69]

张彤, 黄波, 罗改, 西藏中冈底斯带北部早白垩世构造属性: 来自则弄群火山岩锆石U-Pb年龄及地球化学的制约[J]. 沉积与特提斯地质, 2020, 40(2): 75-90.

[70]

张林奎, 李光明, 曹华文, 西藏冈底斯中段晚侏罗世许如错花岗岩成因: 锆石U-Pb年龄、地球化学及Sr-Nd-Pb-Hf同位素证据[J]. 矿物岩石, 2022, 42(1): 54-67.

[71]

LI M S, HINNOV L, KUMP L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers and Geosciences, 2019, 127: 12-22.

[72]

LASKE G, MASTERS G, MA Z T, et al. Update on CRUST1.0 - A 1-degree global model of earth’s crust[J]. Geophysical Research Abstracts, 2013, 15: EGU2013-2658.

[73]

朱弟成, 潘桂棠, 莫宣学, 冈底斯中北部晚侏罗世—早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(3): 534-546.

[74]

TANG Y, ZHAI Q G, HU P Y, et al. Southward subduction of the bangong-Nujiang Tethys Ocean: insights from Ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet[J]. International Journal of Earth Sciences, 2020, 109(2): 631-647.

[75]

WU H, FAN J J, JIANG Z Q, et al. Late Jurassic-Early Cretaceous magmatic activity in the central Lhasa terrane: petrogenesis and implications for the initial subduction of the slainajap oceanic lithosphere[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110438.

[76]

AN Y, LI S M, ZHU D C, et al. Compositional change from high-Mg to low-Mg magmatism at ca. 150 Ma in the central Lhasa terrane, Tibet: switching from advancing to retreating subduction of the Bangong Tethyan slab[J]. Geological Society of America Bulletin, 2024, 136(1-2): 689-706.

[77]

CAWOOD P A, KRÖNER A, COLLINS W J, et al. Accretionary orogens through earth history[J]. Geological Society, London, Special Publications, 2009, 318(1): 1-36.

[78]

LIU Y M, LI S Z, ZHAI Q G, et al. Jurassic tectonic evolution of Tibetan Plateau: a review of bangong-Nujiang meso-Tethys ocean[J]. Earth-Science Reviews, 2022, 227: 103973.

[79]

HU F, WU F, CHAPMAN J B, et al. Quantitatively tracking the elevation of the tibetan plateau since the cretaceous: insights from whole-rock Sr/Y and La/Yb Ratios[J]. Geophysical Research Letters, 2020, 47(15): e2020GL089202.

[80]

WANG W, ZHAI Q G, HU P Y, et al. Magmatic records of subduction and closure of the Meso-Tethys Ocean in the northern-central Tibetan Plateau[J]. Geological Society of America Bulletin, 2023, 135(11-12): 2849-2867.

[81]

WANG J G, HU X M, GARZANTI E, et al. Early Cretaceous topographic growth of the lhasaplano, Tibetan Plateau: constraints from the damxung conglomerate[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5748-5765.

[82]

LAI W, HU X M, GARZANTI E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. Geological Society of America Bulletin, 2019, 131(11-12): 1823-1836.

[83]

ORME D, LASKOWSKI A. Basin analysis of the albian-santonian Xigaze forearc, Lazi Region, south-central Tibet[J]. Journal of Sedimentary Research, 2016, 86: 894-913.

[84]

CHEN Y, ZHU D C, ZHAO Z D, et al. Slab breakoff triggered Ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2): 449-463.

[85]

YI J K, WANG Q, ZHU D C, et al. Westward-younging high-Mg adakitic magmatism in central Tibet: record of a westward-migrating lithospheric foundering beneath the Lhasa-Qiangtang collision zone during the Late Cretaceous[J]. Lithos, 2018, 316: 92-103.

[86]

DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth and Environment, 2022, 3(10): 652-667.

[87]

MENG F Y, ZHAO Z D, ZHU D C, et al. Late Cretaceous magmatism in mamba area, central Lhasa subterrane: products of back-arc extension of neo-Tethyan ocean?[J]. Gondwana Research, 2014, 26(2): 505-520.

[88]

MA L, WANG Q, WYMAN D A, et al. Late Cretaceous back-arc extension and arc system evolution in the gangdese area, southern Tibet: geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from dagze diabases[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9): 6159-6181.

[89]

WANG Z, ZHAO Z, WAN Y, et al. The initial slab rollback of Neo-Tethys Ocean: constrain from Gongga adakitic rocks and enclaves in the late Cretaceous[J]. Lithos, 2023, 440: 107050.

[90]

LEIER A L, DECELLES P G, KAPP P, et al. The takena formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America Bulletin, 2007, 119(1/2): 31-48.

[91]

LIU H, LI G M, HUANG H X, et al. Petrogenesis of Late Cretaceous jiangla’angzong I-type granite in central Lhasa terrane, Tibet, China: constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes[J]. Acta Geologica Sinica - English Edition, 2018, 92(4): 1396-1414.

[92]

WANG Y, TANG J X, WANG L Q, et al. Magmatism and metallogenic mechanism of the Ga’erqiong and galale Cu-Au deposits in the west central Lhasa subterrane, Tibet: constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes[J]. Ore Geology Reviews, 2019, 105: 616-635.

[93]

BECK R A, BURBANK D W, SERCOMBE W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 1995, 373(6509): 55-58.

[94]

DING L, MAKSATBEK S, CAI F L, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences, 2017, 60(4): 635-651.

[95]

DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in North Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455: 49-61.

[96]

HU X M, GARZANTI E, WANG J G, et al. The timing of India-Asia collision onset: facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.

[97]

NAJMAN Y, APPEL E, BOUDAGHER-FADEL M, et al. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12416.

[98]

ZHUANG G S, NAJMAN Y, GUILLOT S, et al. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan[J]. Earth and Planetary Science Letters, 2015, 432: 363-373.

[99]

ZHU D C, WANG Q, CAWOOD P A, et al. Raising thegangdese mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 214-223.

[100]

QI Y, GOU G N, WANG Q, et al. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (-64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane[J]. Lithos, 2018, 302: 178-188.

[101]

马绪宣, 许志琴, 刘飞, 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例[J]. 地质学报, 2021, 95(1): 107-123.

[102]

HAO L L, WANG Q, MA L, et al. Differentiation of continent crust by cumulate remelting during continental slab tearing: evidence from Miocene high-silica potassic rocks in southern Tibet[J]. Lithos, 2022, 426: 106780.

[103]

HUANG F, CHEN J L, XU J F, et al. Os-Nd-Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: partial melting of a pyroxenite-bearing lithospheric mantle?[J]. Geochimica et Cosmochimica Acta, 2015, 163: 279-298.

[104]

WOLFF R, HETZEL R, HÖLZER K, et al. Rift propagation in South Tibet controlled by under-thrusting of India: a case study of the tangra yumco graben (south Tibet)[J]. Journal of the Geological Society, 2023, 180(2): jgs2022-090.

[105]

HOU Z, WANG R, ZHANG H J, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth Science Reviews, 2023, 243: 104482.

[106]

CHEN N, WANG X B, SHAO C S, et al. Crustal electrical structure across the tangra-yumco tectonic belt revealed by magnetotelluric data: new insights on the east-west extension mechanism of the Tibetan Plateau[J]. Acta Geophysica, 2023, 71(2): 783-794.

[107]

STYRON R, TAYLOR M, SUNDELL K. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 2015, 8(2): 131-134.

基金资助

国家自然科学基金项目(42202237)

国家自然科学基金项目(42304105)

国家自然科学基金项目(42274120)

国家自然科学基金项目(41874102)

中国石油大学(北京)科研基金资助项目(2462023YJRC004)

科学技术部第二次青藏高原科学考察项目(2019QZKK0701)

AI Summary AI Mindmap
PDF (8119KB)

161

访问

0

被引

详细

导航
相关文章

AI思维导图

/