随着ChatGPT的火热,LLM(Large Language Model,大规模语言模型)技术正在迅速迭代发展,这种预训练的大型模型有着更好的自然语言理解能力,更适用于实体抽取、语义分解等领域。但是LLM的问题在于其部署运行成本较大,且在回答问题时会出现不准确的情况。因此将我们的方法与LLM进行结合,有望在减少运行成本的同时提高问题回答的准确率。
YUY Q, WANGY Z, MUJ Q, et al. Chinese mineral named entity recognition based on BERT model[J]. Expert Systems with Applications, 2022, 206: 117727.
[2]
LIUC J, JIX H, DONGY H, et al. Chinese mineral question and answering system based on knowledge graph[J]. Expert Systems with Applications, 2023, 231: 120841.
YIHW T, CHANGM W, HEX D, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1:long papers). Stroudsburg, USA: Association for Computational Linguistics, 2015: 1321-1331.
[14]
ZHENGW G, YUJ X, ZOUL, et al. Question answering over knowledge graphs[J]. Proceedings of the VLDB Endowment, 2018, 11(11): 1373-1386.
[15]
SAXENAA, TRIPATHIA, TALUKDARP. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 4498-4507.
Hudson Institute of Mineralogy. Mindat[EB/OL]. (2020-05-15)[2024-04-24]. https://www.mindat.org/.
[21]
Mineralogical Society of America. American mineralogist crystal structure database[DB/OL]. (2019-04-01)[2024-04-24]. http://rruff.geo.arizona.edu/AMS/amcsd.php.
ABUJABALA, YAHYAM, RIEDEWALDM, et al. Automated template generation for question answering over knowledge graphs[C]// Proceedings of the 26th international conference on World Wide Web. Perth, Australia: ACM, 2017: 1191-1200.
[24]
TROUILLONT, WELBLJ, RIEDELS, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd international conference on machine learning, New York: ACM, 2016: 2071-2080.
[25]
WANGQ, MAOZ D, WANGB, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
[26]
DEVLINJ, CHANGM, LEEK, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics:human language technologies. Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186.