知识图谱是人工智能研究的重要方向之一,最早是由 Google 在 2012 年 5 月提出的 Google Knowledge Graph[4]。作为一个知识库,知识图谱整合多源信息,使用语义检索提供搜索服务是一种用于组织、存储和表示知识的图状数据结构,它描述了不同实体之间的关系和属性。知识图谱旨在模拟现实世界中的概念、事实和关联,以便机器能够理解和推理这些知识。广义上的知识图谱是一种语义网络,能够捕捉信息之间的语义联系,有助于机器理解数据的含义和上下文。语义网为数据间建立关联,但没有解决对知识的认知。本体,即“Ontology”,是脱胎于哲学的概念,它是指“一种形式化的,对于共享概念体系的明确而又详细的说明”[5]。本体用于指导对真实世界存在的事物和领域内的术语及概念进行认知建模,是知识图谱的概念模型和逻辑基础。通过构建矿产知识图谱,可以形成一个具有普适性的专家知识库,自动挖掘出成矿物质相关因素之间的内在联系,发现一些传统方法难以发掘的深层次信息,从而指引矿产预测工作的方向。本文依据综合信息矿产预测理论构建本体,并探讨了基于本体指导的矿产预测知识图谱的构建思路。
DAIY F, WANGS P, XIONGN N, et al. A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9(5): 750.
[5]
STUDERR, BENJAMINSV R, FENSELD. Knowledge engineering: principles and methods[J]. Data and Knowledge Engineering, 1998, 25(1/2): 161-197.
[6]
WANGC B, MAX G, CHENJ G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers and Geosciences, 2018, 112: 112-120.
[7]
QIUQ J, XIEZ, WUL, et al. Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques[J]. Earth Science Informatics, 2020, 13(4): 1393-1410.
[8]
ENKHSAIKHANM, HOLDENE J, DUURINGP, et al. Understanding ore-forming conditions using machine reading of text[J]. Ore Geology Reviews, 2021, 135: 104200.
YANQ, XUEL F, LIUZ Y, et al. Construction of deposit model-oriented knowledge graph[J]. IOP Conference Series: Earth and Environmental Science, 2021, 671(1): 012034.
[11]
RASKINR G, PANM J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers and Geosciences, 2005, 31(9): 1119-1125.
[12]
LIW J, WUL, XIEZ, et al. Ontology-based question understanding with the constraint of spatio-temporal geological knowledge[J]. Earth Science Informatics, 2019, 12(4): 599-613.
[13]
COXS J D, RICHARDS M. A formal model for the geologic time scale and global stratotype section and point, compatible with geospatial information transfer standards[J]. Geosphere, 2005, 1(3): 119-137.
COXS J D, RICHARDS M. A geologic timescale ontology and service[J]. Earth Science Informatics, 2015, 8(1): 5-19.
[25]
LUOL H, LIY F, HAFFARIG, et al. Normalizing flow-based neural process for few-shot knowledge graph completion[C]// Proceedings of the 46th international ACM SIGIR conference on research and development in information retrieval. Taipei: Association for Computing Machinery, 2023: 900-910.
[26]
JIAS B, XIANGY, CHENX J, et al. Triple trustworthiness measurement for knowledge graph[C]// The world wide web conference. San Francisco: Association for Computing Machinery, 2019: 2865-2871.