LIUC Z, LIM C, ZHANGY, et al. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm[J]. Minerals, 2019, 9(9): 516.
ZENGX, XIAOY C, JIX H, et al. Mineral identification based on deep learning that combines image and mohs hardness[J]. Minerals, 2021, 11(5): 506.
[13]
WUB K, JIX H, HEM Y, et al. Mineral identification based on multi-label image classification[J]. Minerals, 2022, 12(11): 1338.
[14]
ANTONIOUA, STORKEYA, EDWARDSH. Data augmentation generative adversarial networks[EB/OL]. (2018-03-21)[2023-07-29]. https://arxiv.org/abs/1711.04340v2.
[15]
CRESWELLA, WHITET, DUMOULINV, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[16]
BUSHRAS N, SHOBANAG. A survey on deep convolutional generative adversarial neural network (dcgan) for detection of Covid-19 using chest X-ray/CT-Scan[C]// Proceedings of the 3rd international conference on intelligent sustainable systems (ICISS), Thoothukudi. New York: IEEE, 2020: 702-708.
DONGX B, YUZ W, CAOW M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258.
[20]
SAQLAINM, JARGALSAIKHANB, LEEJ Y. A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 171-182.
LIJ, JIAJ J, XUD L. Unsupervised representation learning of image-based plant disease with deep convolutional generative adversarial networks[C]// Proceedings of the 37th Chinese control conference (CCC). New York: IEEE, 2018: 9159-9163.
[24]
蔡晓龙. 基于DCGAN算法的图像生成技术研究[D]. 青岛: 青岛理工大学, 2018.
[25]
ROKACHL. Ensemble learning: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(5): e1249.
[26]
HEK M, ZHANGX Y, RENS Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2016: 770-778.
[27]
RADOSAVOVICI, KOSARAJUR P, GIRSHICKR, et al. Designing network design spaces[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE, 2020: 10428-10436.
[28]
TANM X, LEQ V. Efficientnet: rethinking model scaling for convolutional neural networks[EB/OL]. (2020-09-11)[2023-07-02]. https://arxiv.org/abs/1905.11946.
[29]
DOSOVITSKIYA, BEYERL, KOLESNIKOVA, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03)[2023-07-16]. https://arxiv.org/abs/2010.11929.