POLATÖ, POLATA, EKICIT. Automatic classification of volcanic rocks from thin section images using transfer learning networks[J]. Neural Computing and Applications, 2021, 33(18): 11531-11540.
[7]
姜枫. 基于语义识别的砂岩薄片图像分割方法研究[D]. 南京: 南京大学, 2018.
[8]
QIAOW D, ZHAOY F, XUY, et al. Deep learning-based pixel-level rock fragment recognition during tunnel excavation using instance segmentation model[J]. Tunnelling and Underground Space Technology, 2021, 115: 104072.
[9]
YINB Q, HUQ H, ZHUY Y, et al. Paw-Net: stacking ensemble deep learning for segmenting scanning electron microscopy images of fine-grained shale samples[J]. Computers and Geosciences, 2022, 168: 105218.
SHIY L, YANGW Z, DUH X, et al. Overview of image captions based on deep learning[J]. Acta Electonica Sinica, 2021, 49(10): 2048-2060.
[13]
PANS J, YANGQ. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10), 1345-1359.
[14]
SHINH C, ROTHH R, GAOM, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions On Medical Imaging, 2016, 35(5): 1285-1298.
[15]
TANC, SUNF, KONGT, et al. A survey on deep transfer learning: with an emphasis on domain adaptation techniques[C]// Artificial neural networks and machine learning-ICANN 2018: 27th international conference on Artificial Neural Networks. Rhodes: Springer International Publishing, 2018: 270-279.
[16]
TSCHANNENV, DELESCLUSEM, RODRIGUEZM, et al. Facies classification from well logs using an inception convolutional network[EB/OL]. (2017-06-02)[2024-01-15]. https://doi.org/10.48550/arXiv.1706.00613.
[17]
PIRESDE LIMA R, SURIAMINF, MARFURTK J, et al. Convolutional neural networks as aid in core lithofacies classification[J]. Interpretation, 2019, 7(3): SF27-SF40.
[18]
KOESHIDAYATULLAHA, MORSILLIM, LEHRMANND J, et al. Fully automated carbonate petrography using deep convolutional neural networks[J]. Marine and Petroleum Geology, 2020, 122: 104687.
[19]
DAWSONH L, DUBRULEO, JOHNC M. Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification[J]. Computers and Geosciences, 2023, 171: 105284.
[20]
ACHANTAR, SHAJIA, SMITHK, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[21]
SIMONYANK, ZISSERMANA. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2024-01-16]. https://doi.org/10.48550/arXiv.1409.1556.
[22]
WOOS, PARKJ, LEEJ Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
[23]
CHUNGJ, GULCEHREC, CHOK H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-01-21]. https://doi.org/10.48550/arXiv.1412.3555.