1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
2. Technological Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China
3. China Institute of Geo-Environment Monitoring, Beijing 100081, China
4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
5. School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
BAHLALIM L, SALINASP, JACKSONM D. Efficient numerical simulation of density-driven flows: application to the 2- and 3-D elder problem[J]. Water Resources Research, 2022, 58(8): e2022W-e32307W.
ABARCAE, CARRERAJ, SÁNCHEZ-VILAX, et al. Anisotropic dispersive Henry problem[J]. Advances in Water Resources, 2007, 30(4): 913-926.
[9]
MILLOTR, SCAILLETB, SANJUANB. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871.
UNSWORTHM J, TEAMT I M, JONESA G, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
WANGX, WANGG L, LUC, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131.
[22]
XUH R, LIUG H, ZHAOZ H, et al. Coupled THMC modeling on chemical stimulation in fractured geothermal reservoirs[J]. Geothermics, 2023, 116: 102854.
[23]
SHIH L, WANGG L, LUC. Numerical investigation on delaying thermal breakthrough by regulating reinjection fluid path in multi-aquifer geothermal system[J]. Applied Thermal Engineering, 2023, 221: 119692.
[24]
SAEEDM, MRITYUNJAYS, AYSEGULT, et al. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir[J]. Energy, 2022, 247: 123511.
[25]
WANGG L, LIUG H, ZHAOZ H, et al. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model[J]. Renewable Energy, 2019, 139: 873-894.
[26]
MAF, LIUG H, ZHAOZ H, et al. Coupled thermo-hydro-mechanical modeling on the Rongcheng geothermal field, China[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5209-5233.
[27]
ZHANGD X, KANGQ J. Pore scale simulation of solute transport in fractured porousmedia[J]. Geophysical Research Letters, 2004, 31(12): 289-302.
[28]
RANJRAMM, GLEESONT, LUIJENDIJKE. Is the permeability of crystalline rock in the shallow crust related to depth, lithology, or tectonic setting?[J]. Geofluids, 2005, 15: 106-119.
[29]
KUDERJ. Methoden zur berechnung von fluidparametern[R]. Hannover: Methoden zur Berechnung von Fluidparametern, 2011.
[30]
BATZLEM, WANGZ J. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408.
LUI-HEUNGC, GIESKESJ M, YOUC F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4443-4454.
[33]
JAMESR H, RUDNICKIM D, PALMERM R. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system[J]. Earth and Planetary Science Letters, 1999, 171(1): 157-169.
[34]
LUI-HEUNGC, EDMONDJ M. Variation of lithium isotope composition in the marine environment: a preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711-1717.
[35]
WUNDERB, MEIXNERA, ROMERR L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120.
[36]
WUNDERB, MEIXNERA, ROMERR L, et al. Li-isotope fractionation between silicates and fluids: pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy, 2011, 23(3): 333-342.
[37]
JENKING R T, LINKLATERC, FALLICKA E. Modeling of mineral δ18O values in an igneous aureole: closed-system model predicts apparent open-system δ18O values[J]. Geology, 1991, 19(12): 1185-1188.
FURLONGK P, CHAPMAND S. Heat flow, heat generation, and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 385-410.
LINW J, WANGG L, GANH N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
WANGQ, CHUNGS L, LIX H, et al. Crustal melting and flow beneath northern Tibet: evidence from mid-Miocene to quaternary strongly peraluminous rhyolites in the southern Kunlun range[J]. Journal of Petrology, 2012, 53(12): 2523-2566.
WANGG, WEIW B, YEG F, et al. 3-D electrical structure across theYadong-Gulu Rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
[57]
CHENL S, BOOKERJ R, JONESA G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274(5293): 1694-1696.
[58]
SUJ B, TANH B. The genesis of rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northernYadong-Gulu Rift[J]. Ore Geology Reviews, 2022, 147: 104987.
[59]
STOBERI, BUCHERK. Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks[J]. Geofluids, 2015, 15(1/2): 161-178.
MENZIESC D, TEAGLED A H, CRAWD, et al. Incursion of meteoric waters into the ductile regime in an activeorogen[J]. Earth and Planetary Science Letters, 2014, 399: 1-13.
[63]
DIAMONDL W, WANNERC, WABERH N. Penetration depth of meteoric water inorogenic geothermal systems[J]. Geology, 2018, 46(12): 1063-1066.