基于水文地球化学模拟软件SOLVEQ的多组分地热温度计也是估算热储温度常用的一种方法,其主要通过温度与矿物饱和指数的关系来确定热储层中达到水岩相互平衡时的温度[2],在利用SOLVEQ开展水化学模拟的过程中,不仅可以估算热储的温度,还可以对地热流体水样铝离子浓度进行矫正[3]。之后软件GeoT的开发使多组分地球化学地热温度计可以自动计算出热储温度,这大大地减少了在使用多组分地球化学地热温度计计算热储温度时的工作量[4]。近年来,基于多组分地球化学方法开发的RTEst软件(Reservoir Temperature Estimator)也被用于热储温度的估算[5]。然而在使用多组分地热温度计来计算热储温度时,选择合适的矿物组合以及准确的Mg、Al浓度都是至关重要的,因此该方法并不能完全取代传统地球化学地热温度计的作用,其只能用于进一步验证,增加可信度[6]。
NICHOLSONK. Geothermal fluids: chemistry and exploration techniques[M]. Berlin: Springer-Verlag, 1993.
[2]
REEDM, SPYCHERN. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1479-1492.
[3]
PANGZ H, REEDM. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.
PALMERC D, SMITHR W, NEUPANEG, et al. The Reservoir Temperature Estimator (RTEst): a multicomponent geothermometry tool[J]. Geothermics, 2024, 119: 102926.
[6]
PEIFFERL, WANNERC, SPYCHERN, et al. Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area[J]. Geothermics, 2014, 51: 154-169.
[7]
PÉREZ-ZÁRATED, SANTOYOE, GUEVARAM, et al. Geochemometric modeling and geothermal experiments of Water/Rock Interaction for the study of alkali-feldspars dissolution[J]. Applied Thermal Engineering, 2015, 75: 1244-1261.
[8]
NITSCHKEF, HELDS, NEUMANNT, et al. Geochemical characterization of the Villarrica geothermal system, Southern Chile, part II: site-specific re-evaluation of SiO2 and Na-K solute geothermometers[J]. Geothermics, 2018, 74: 217-225.
[9]
BOSCHETTIT. A revision of lithium minerals thermodynamics: possible implications for fluids geochemistry andgeothermometry[J]. Geothermics, 2022, 98: 102286.
[10]
BOSCHETTIT. An update on lithium mica thermodynamics and its geothermometrical application[J]. Geothermics, 2023, 109: 102661.
[11]
NITSCHKEF, HELDS, VILLALÓNI, et al. Geochemical reservoir exploration and temperature determination at the Mt. villarrica geothermal system, Chile[C]// Proceedings of European Geothermal Congress, European Geothermal Energy Council, Strasbourg, France, 2016: 19-24.
[12]
PEPINJ, PERSONM, PHILLIPSF, et al. Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system[J]. Geofluids, 2015, 15(1/2): 139-160.
[13]
HARVEYC, BEARDSMOREG, MOECKI, et al. Geothermal exploration: global strategies and applications[M]. Bochum: IGA-Academy, 2016.
[14]
GIGGENBACHW F. Geothermal solute equilibria. Derivation of Na-K-Mg-Cageoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.
DÍAZ-GONZÁLEZL, SANTOYOE, REYES-REYESJ. Tresnuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos[J]. Revista Mexicana de Ciencias Geológicas, 2008, 25(3): 465-482.
[17]
ARNORSSONS. The quartz-and Na/K geothermometers. I. New thermodynamic calibration[C]// Proceedings of the World Geothermal Congress, International Geothermal Association, Kyushu-Tohoku, Japan, 2000: 929-934.
[18]
TRUESDELLA H. Summary of section III geochemical techniques in exploration[C]//Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources. Washington, DC: Government Printing Office, 1976:liii-lxxix.
[19]
TONANIF B. Some remarks on the application of geochemical techniques in geothermal exploration[M]//Advances in European Geothermal Research. Dordrecht: Springer, 1980: 428-443.
[20]
ARNÓRSSONS. Chemical equilibria in Icelandic geothermal systems: implications for chemical geothermometry investigations[J]. Geothermics, 1983, 12(2/3): 119-128.
[21]
FOURNIERR O. A revised equation for Na/K geothermometer[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1979, 3: 221-224.
[22]
NIEVAD, NIEVAR. Developments in geothermal energy in Mexico: Part twelve. A cationic geothermometer for prospecting of geothermal resources[J]. Heat Recovery Systems and CHP, 1987, 7(3): 243-258.
[23]
VERMAS P, SANTOYOE. New improved equations for Na K, Na Li and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research, 1997, 79(1/2): 9-23.
[24]
CANI. A new improved Na/K geothermometer by artificial neural networks[J]. Geothermics, 2002, 31(6): 751-760.
[25]
STEFÁNSSONA, ARNÓRSSONS. Feldspar saturation state in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(15): 2567-2584.
[26]
FOURNIERO. Interpretation of Na-K-Mg relations in geothermal waters[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1990, 14: 1421-1425.
[27]
LIJ X, SAGOEG, LIY L. Applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs[J]. Geothermics, 2020, 84: 101728.
[28]
FOURNIERR O, TRUESDELLA H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
[29]
POPEL A, HAJASHA, POPPR K. An experimental investigation of the quartz, Na-K, Na-K-Ca geothermometers and the effects of fluid composition[J]. Journal of Volcanology and Geothermal Research, 1987, 31(1/2): 151-161.
[30]
FOURNIERR O. Lectures on geochemical interpretation of hydrothermal waters[C]//Geothermal Training in Iceland, UNU Geothermal Training Programme, Iceland, 1989: 10.
[31]
PAČEST. A systematic deviation from Na-K-Ca geothermometer below 75 ℃ and above 10-4 atm P C O 2[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 541-544.
[32]
FOURNIERR O, POTTERII R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9): 1543-1550.
[33]
CHIODINIG, CIONIR, GUIDIM, et al. Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: a theoretical investigation based on a mineral-solution equilibrium model[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2709-2727.
[34]
LIJ X, ZHANGL, RUANC X, et al. Estimates of reservoir temperatures for non-magmatic convective geothermal systems: insights from the Ranwu and Rekeng geothermal fields, western Sichuan Province, China[J]. Journal of Hydrology, 2022, 609: 127668.
[35]
KOGAA. Geochemistry of the waters discharged from drillholes in the Otake and hatchobaru areas[J]. Geothermics, 1970, 2: 1422-1425.
[36]
FOUILLACC, MICHARDG. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs[J]. Geothermics, 1981, 10(1): 55-70.
[37]
SANJUANB, MILLOTR, BRACHM. Use of a new sodium/lithium (Na/Li) geothermometric relationship for high-temperature dilute geothermal fluids from Iceland[C]//Proceedings of the World Geothermal Congress, International Geothermal Association, Bali, Indonesia, 2010: 12.
[38]
KHARAKAY K, MARINERR H. Chemical geothermometers and their application to formation waters from sedimentary basins[M]//NAESER N D, MCCUIIOH T H. Thermal history of sedimentary basins. New York: Springer, 1989: 99-117.
[39]
SANJUANB, MILLOTR, ÁSMUNDSSONR, et al. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments[J]. Chemical Geology, 2014, 389: 60-81.
[40]
GILM. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas[J]. Chemical Geology, 1990, 89(1/2): 117-134.
[41]
KHARAKAY K, LICOM S, LAWL M. Chemical geothermometers applied to formation waters, gulf of Mexico and California Basins[J]. AAPG Bulletin, 1982, 66(5): 588-588
[42]
KHARAKAY K, HULLR W, CAROTHERSW W. Water-rock interactions in sedimentary basins[M]//Relationship of organic matter and mineral diagenesis. McLean: SEPM (Society for Sedimentary Geology), 1985: 79-176.
[43]
MINISSALEA A, DUCHIV. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy[J]. Journal of Volcanology and Geothermal Research, 1988, 35(3): 237-252.
[44]
REYESA G, TROMPETTERW J. Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology, 2012, 314: 96-112.
[45]
LIJ X, SAGOEG, WANGX Y, et al. Assessing the suitability of lithium-related geothermometers for estimating the temperature of felsic rock reservoirs[J]. Geothermics, 2021, 89: 101950.
[46]
MAHONW A J. Silica in hot water discharged from drillholes at Wairakei, New Zealand[J]. New Zealand Journal of Science, 1966, 9: 135-144.
[47]
FOURNIERR O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1/2/3/4): 41-50.
[48]
FOURNIERR O, POTTERR W. An equation correlating the solubility of quartz in water from 25 ℃ to 900 ℃ at pressures up to 10000 bars[J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1969-1973.
[49]
VERMAM P. Chemical thermodynamics of silica: a critique on its geothermometer[J]. Geothermics, 2000, 29(3): 323-346.
[50]
MARINIL, CHIODINIG, CIONIR. New geothermometers for carbonate: evaporite geothermal reservoirs[J]. Geothermics, 1986, 15(1): 77-86.
[51]
HOLLANDT J B, POWELLR. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 1998, 16(3): 309-343.
[52]
HYEONGK, CAPUANOR M. Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3065-3080.
[53]
VESPASIANOG, APOLLAROC, MUTOF, et al. Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework[J]. Applied Geochemistry, 2014, 41: 73-88.
[54]
LIJ X, WUZ H, TIANG H, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied Geochemistry, 2022, 138: 105211.
[55]
WANGG L, GANH N, LINW J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013.
[56]
LINW J, WANGG L, GANH N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[57]
GUOQ H, WANGY X. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research, 2012, 215: 61-73.
[58]
GIGGENBACHW, SHEPPARDD, ROBINSONB, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand[J]. Geothermics, 1994, 23(5/6): 599-644.
[59]
LIJ X, YANGG, SAGOEG, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 2018, 75: 154-163.
[60]
WANGX, WANGG L, LUC, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131.
[61]
ARNÓRSSONS, GUNNLAUGSSONE, SVAVARSSONH. The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 547-566.
TRUESDELLA H, NATHENSONM, RYER O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26): 3694-3704.
[64]
TIANJ, PANGZ H, GUOQ, et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105.
LIJ X, SAGOEG, YANGG, et al. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: a comparative study in Yangbajing geothermal field and Guangdong geothermal fields[J]. Journal of Volcanology and Geothermal Research, 2018, 352: 92-105.