1. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University, Shenzhen 518060, China
2. College of Civil and Transportation Engineering/Guangdong Provincial Key Laboratory of Deep Earth Science and Geothermal Energy Exploitation and Utilization, Shenzhen University, Shenzhen 518060, China
3. College of Water Resource & Hydropower/State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
近年来,全球气候变暖已经从一个科学问题,逐渐成为全球共同关注的重要社会问题。化石能源过度使用造成温室气体的大量排放,是导致全球气候变暖和大气环境污染的主要原因之一[1⇓-3]。2016年9月,中国宣布加入《巴黎协定》(The Paris Agreement),并承诺在2030年实现“碳达峰”,2060年达到“碳中和”[4]。为实现这一宏伟目标,除了加速推动风、光等可再生能源的研究与应用[5]外,大力发展地热能等中低温热源的回收与利用技术,提高能源使用效率,也是我国构建新型能源结构、实现可持续发展的有效途径之一[6⇓⇓⇓-10]。
JOHNSSONF, KJÄRSTADJ, ROOTZÉNJ. The threat to climate change mitigation posed by the abundance of fossil fuels[J]. Climate Policy, 2019, 19(2): 258-274.
[2]
SHINDELLD, SMITHC J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 2019, 573(7774): 408-411.
[3]
HÖÖKM, TANGX. Depletion of fossil fuels and anthropogenic climate change: a review[J]. Energy Policy, 2013, 52: 797-809.
[4]
ZHOUN, PRICEL, DAIY D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030[J]. Applied Energy, 2019, 239: 793-819.
[5]
BROCKWAYP E, OWENA, BRAND-CORREAL I, et al. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nature Energy, 2019, 4(7): 612-621.
[6]
HENRYA, PRASHERR, MAJUMDARA. Five thermal energy grand challenges for decarbonization[J]. Nature Energy, 2020, 5(9): 635-637.
XUZ Y, WANGR Z, YANGC. Perspectives for low-temperature waste heat recovery[J]. Energy, 2019, 176: 1037-1043.
[13]
TCHANCHEB F, LAMBRINOSG, FRANGOUDAKISA, et al. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979.
LINW J, WANGG L, GANH N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[16]
KISHORER A, PRIYAS. A review on low-grade thermal energy harvesting: materials, methods and devices[J]. Materials, 2018, 11(8): 1433.
[17]
ELHAGE H, RAMADANM, JABERH, et al. A short review on the techniques of waste heat recovery from domestic applications[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 42(24): 3019-3034.
[18]
BARBIERE. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65.
TOMASINI-MONTENEGROC, SANTOYO-CASTELAZOE, GUJBAH, et al. Life cycle assessment of geothermal power generation technologies: an updated review[J]. Applied Thermal Engineering, 2017, 114: 1119-1136.
[21]
LUNDJ W, TOTHA N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915.
[22]
International Renewable Energy Agency. Renewable capacity statistics 2021[R]. Bonn: IRENA, 2021.
ZHANGL, CHENS, ZHANGC, et al. Geothermal power generation in China: status and prospects[J]. Energy Science and Engineering, 2019, 7(5): 1428-1450.
[25]
WANGY Z, DUY P, WANGJ Y, et al. Comparative life cycle assessment of geothermal power generation systems in China[J]. Resources, Conservation and Recycling, 2020, 155: 104670.
[26]
XIAL Y, ZHANGY B. An overview of world geothermal power generation and a case study on China: the resource and market perspective[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 411-423.
[27]
JEREMIAHB K M, AKANNIO O. Geothermal wellhead technology power plants in grid electricity generation: a review[J]. Energy Strategy Reviews, 2022, 39: 100735.
[28]
LIT L, LIUQ H, GAOX, et al. Thermodynamic, economic, and environmental performance comparison of typical geothermal power generation systems driven by hot dry rock[J]. Energy Reports, 2022, 8: 2762-2777.
[29]
MOHAMMADIZ, FALLAHM. Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy[J]. Energy, 2023, 282: 128372.
[30]
LIB, XIEH P, SUNL C, et al. Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation[J]. Energy, 2024, 291: 130452.
[31]
AHMADIA, ELHAJ ASSAD M, JAMALID H, et al. Applications of geothermal organic Rankine Cycle for electricity production[J]. Journal of Cleaner Production, 2020, 274: 122950.
YANGW, XIEH P, SUNL C, et al. An experimental investigation on the performance of TEGs with a compact heat exchanger design towards low-grade thermal energy recovery[J]. Applied Thermal Engineering, 2021, 194: 117119.
[34]
XIEH P, GAOT Y, LONGX T, et al. Design and performance of a modular 1 kilowatt-level thermoelectric generator for geothermal application at medium-low temperature[J]. Energy Conversion and Management, 2023, 298: 117782.
[35]
GOUX L, XIAOH, YANGS W. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy, 2010, 87(10): 3131-3136.
[36]
TOHIDIF, GHAZANFARIHOLAGH S, CHITSAZA. Thermoelectric generators: a comprehensive review of characteristics and applications[J]. Applied Thermal Engineering, 2022, 201: 117793.
[37]
PATILD S, ARAKERIMATHR R, WALKEP V. Thermoelectric materials and heat exchangers for power generation: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 1-22.
[38]
ALGHOULM A, SHAHAHMADIS A, YEGANEHB, et al. A review of thermoelectric power generation systems: roles of existing test rigs/prototypes and their associated cooling units on output performance[J]. Energy Conversion and Management, 2018, 174: 138-156.
[39]
陈立东, 刘睿恒, 史讯. 热电材料与器件[M]. 北京: 科学出版社, 2018.
[40]
LIAOJ X, XIEH P, WANGJ, et al. Effect of operating conditions on the output performance of a compact TEG for low-grade geothermal energy utilization[J]. Applied Thermal Engineering, 2024, 236: 121878.
[41]
JID X, CAIH T, YEZ H, et al. Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: a Techno-economic analysis[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102914.
[42]
ZEBARJADIM, ESFARJANIK, DRESSELHAUSM S, et al. Perspectives on thermoelectrics: from fundamentals to device applications[J]. Energy and Environmental Science, 2012, 5(1): 5147-5162.
[43]
HEJ, TRITTT M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997.