WANGG L, GANH N, LINW J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica-English Edition, 2023, 97(4): 1003-1013.
[3]
LINW J, WANGG L, GANH N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259.
[4]
KELKARS, WOLDEGABRIELG, REHFELDTK. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14.
[5]
NORBECKJ H, MCCLUREM W, HORNER N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149.
[6]
STOBERI. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany[J]. Hydrogeology Journal, 2011, 19(3): 685-699.
[7]
BUCHERK, STOBERI. Large-scale chemical stratification of fluids in the crust: hydraulic and chemical data from the geothermal research site Urach, Germany[J]. Geofluids, 2016, 16(5): 813-825.
[8]
GENTERA, FRITSCHD, CUENOTN, et al. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production[C]//Proceedings of the 34th workshop on geothermal reservoir engineering. Palo Alto: Standford University,2009:1-7.
[9]
GENTERA, EVANSK, CUENOTN, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7/8): 502-516.
[10]
TERAKAWAT, MILLERS A, DEICHMANNN. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B7): B07305-1-B07305-15.
[11]
MCMAHONA, BAISCHS, PARADEL. Case study of the seismicity associated with the stimulation of the enhanced geothermal system at Habanero, Australia[C]∥Proceedings of Australian geothermal energy conferences 2013. Brisbane, Australia: AGEC Congress,2013:29-36.
[12]
ZARROUKS J, MOONH. Efficiency of geothermal power plants: a worldwide review[J]. Geothermics, 2014, 51: 142-153.
[13]
PORTIERN, HINDERERJ, RICCARDIU, et al. Hybrid gravimetry monitoring of Soultz-sous-Forêts and Rittershoffen geothermal sites (Alsace, France)[J]. Geothermics, 2018, 76: 201-219.
[14]
HACKSTEINFV, MADLENERR. Sustainable operation of geothermal power plants: why economics matters[J]. Geothermal Energy, 2021, 9(1): 10.
[15]
HUANGS P. Geothermal energy in China[J]. Nature Climate Change, 2012, 2(8): 557-560.
GUOJ C, ZHAOZ H, XIAOY. The challenge and future development of hydraulic fracturing in deep hot-dry rock in EGS[C]∥Proceedings of ARMA-CUPB geothermal international conference. Beijing: ARMA Congress,2019:9898.
[28]
WANGD B, BIANX B, QINH, et al. Experimental investigation of mechanical properties and failure behavior of fluid-saturated hot dry rocks[J]. Natural Resources Research, 2021, 30(1): 289-305.
[29]
XIAOY, GUOJ C, WANGH H, et al. Elastoplastic constitutive model for hydraulic aperture analysis of hydro-shearing in geothermal energy development[J]. SIMULATION: Transactions of The Society for Modeling and Simulation International, 2018.
YOONJ S, ZANGA, STEPHANSSONO, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[J]. Procedia Engineering, 2017, 191: 1023-1031.
GISCHIGV, PREISIGG. Hydro-fracturing versus hydro-shearing: a critical assessment of two distinct reservoir stimulation mechanisms[C]//Proceedings of the 13th international congress of rock mechanics. Salzburg, Austria: ISRM Congress,2015:103.