PDF
摘要
全球进入隐伏矿体勘查时代,急需新的找矿预测方法。利用集成学习进行的数据驱动的成矿预测模型正在成为深部隐伏矿产勘探的有力工具。然而,基于集成学习的成矿预测模型面临着一些普遍的问题,特别是模型的参数调优。模型的参数调优是一个非常耗时的过程,需要繁琐的计算和足够的专家经验。本文提出了一种基于多源地学知识与贝叶斯优化算法的集成学习模型来解决上述问题。具体来说,首先,基于多源地学知识,构建锰矿成矿预测数据库;其次,基于自适应提升模型(Adaptive Boosting, AdaBoost)和随机森林(Random Forest, RF)模型,建立黔东北锰矿成矿预测模型;然后,采用贝叶斯优化算法(Bayesian Optimization, BO),通过5倍交叉验证的辅助,寻找BO-AdaBoost和BO-RF模型最合适的超参数组合;最后,利用精度、准确率、召回率、F1分数、kappa系数、AUC值等参数及已有成果检测模型的性能。实验结果发现,BO-AdaBoost和BO-RF模型的AUC值都得到了显著的提高,表明BO是一个强大的优化工具,优化结果为集成学习模型的超参数设置提供了参考。同时,实验结果也表明:BO-AdaBoost模型(92.8%)比BO-RF模型(89.9%)具有更高的预测精度和地质泛化能力,在成矿预测方面具有巨大潜力。基于BO-AdaBoost模型的预测图为黔东北隐伏锰矿矿床的勘探提供了重要线索,并可以指导未来的矿产勘探与开发。
关键词
集成学习
/
自适应提升模型
/
随机森林
/
贝叶斯优化算法
/
隐伏锰矿
/
成矿预测
Key words
基于集成学习模型与贝叶斯优化算法的成矿预测[J].
地学前缘, 2025, 32(04): 122-139 DOI:10.13745/j.esf.sf.2025.4.66