The internal structure of rock masses is characterized by the presence of various cracks,and the inherent uncertainty in crack angle and loading direction often results in brittle rock masses undergoing mixed-mode fractures,which combine modeⅠ(tensile mode) and mode Ⅱ(shear mode).To examine the effects of crack length and angle on the modeⅠand mixed-mode Ⅰ/Ⅱ fracture properties of red sandstone,semi-circular bend (SCB) specimens of red sandstone were prepared with three distinct crack angles and three varying crack lengths,resulting in a total of nine experimental groups.Static three-point bending tests were performed on these specimens to obtain load-displacement curves and peak load data.Subsequently,the fracture toughness and fracture energy for each group were calculated.The study analyzed the impact of crack angle and length on the modeⅠand mixed-mode Ⅰ/Ⅱ fracture toughness,fracture energy,and crack propagation paths in red sandstone specimens.Furthermore,the extended finite element method (XFEM) was utilized to develop models corresponding to each group of specimens.This approach facilitated the calculation of dimensionless stress intensity factors for modeⅠand mode Ⅱ fractures,thereby providing a foundation for determining fracture toughness.The numerical results were instrumental in analyzing the proportion of modeⅠand mode Ⅱ fracture types present in the specimens.Experimental findings reveal that red sandstone specimens exhibit pronounced brittle failure characteristics under both modeⅠand mixed mode Ⅰ/Ⅱ fracture conditions.The crack path during specimen fracture adheres to the shortest trajectory from the tip of the prefabricated crack to the loading point at the top.Specifically,when the crack inclination angle is 0°,the specimen experiences pure modeⅠfracture,with the calculated pure modeⅠfracture toughness of red sandstone being 7.179 MPa·mm1/2.Additionally,as the crack length increases,the peak fracture load of the specimen decreases.For mixed-mode(Ⅰ/Ⅱ) fractures occurring within a specific range of crack lengths,the equivalent fracture toughness,denoted as Keff,exhibits a decreasing trend as the crack inclination angle increases.Nonetheless,when the crack length surpasses a critical threshold,Keff no longer adheres to a straightforward decreasing pattern with respect to the inclination angle.Both the crack length and the inclination angle play significant roles in modulating the interplay between modeⅠand mode Ⅱ fracture mechanisms,consequently influencing the overall equivalent fracture toughness of the composite.
岩体内部结构中存在着各种原有和新生的裂纹,这些裂纹的存在破坏了岩体的完整性。在复杂加载条件下,岩体内部裂纹扩展导致岩体破裂,从而引发许多采矿工程、石油工程等岩体工程灾害。由于裂纹与加载方向的不确定性,脆性岩体通常会发生由2种断裂类型组合的复合型断裂,这2种断裂类型分别为裂纹张开型(Ⅰ型)和裂纹剪切型(Ⅱ型)(Ayatollahi et al.,2007a;Aliha et al.,2013)。因此,不同类型脆性断裂是研究含裂纹岩石力学行为的重要课题之一。该研究既可通过使用合适试样开展试验,也可借助理论方法和断裂准则进行。从试验角度来看,最好使用能够正确模拟实际含裂纹岩石断裂条件的简单试验配置和方法(Kuruppu et al.,2012)。
试验过程中向试件施加外部荷载,试件中的预制裂缝尖端产生应力集中,当应力大于某一临界值时,试件发生断裂。裂缝尖端应力场强度用K来表示,而试件发生失稳断裂的临界应力场强度则为断裂韧度。试件裂缝角度β不同则其发生断裂的模式就不同,当β为0时,试件发生纯Ⅰ型断裂,当β增大时,试件发生Ⅰ/Ⅱ型复合断裂,当β增大至一定角度时,试件发生纯Ⅱ型断裂。为了研究半圆盘试件断裂类型,计算其在不同角度和长度裂缝情况下的Ⅰ型和Ⅱ型临界应力强度因子是非常必要的。SCB试件裂纹尖端Ⅰ型和Ⅱ型临界应力强度因子计算公式(Xie et al.,2017)为
试验所用的红砂岩试样均取自甘肃省,砂岩试样呈均匀红色,颗粒分布均匀。Yang et al.(2021)采用X射线衍射和核磁共振方法,对取自同一地区的红砂岩进行了成分和孔隙度测试,结果表明,该类红色砂岩成分主要有富钙钠长石、石英、黏土矿物和氧化铁,孔隙度为11.50%。此外,对该类红砂岩进行的单轴压缩试验(设置了多个平行试样)结果显示试样单轴抗压强度具有良好的一致性,平均值为17.90 MPa。
AlihaM R M, AyatollahiM R,2013.Two-parameter fracture analysis of SCB rock specimen under mixed mode loading[J].Engineering Fracture Mechanics,103:115-123.
[2]
AlihaM R M, AyatollahiM R, AkbardoostJ,2012.Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material[J].Rock Mechanics and Rock Engineering,45(1):65-74.
[3]
AyatollahiM R, AlihaM R M,2007a.Fracture toughness study for a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading[J].International Journal of Rock Mechanics and Mining Sciences,44(4):617-624.
[4]
AyatollahiM R, AlihaM R M,2007b.Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J].Computational Materials Science,38(4):660-670.
[5]
BelytschkoT, BlackT,1999.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,45(5):601-620.
[6]
ChenLichao, ShuaifengLü, ZhangDiankun,2022.Temperature effect on mode Ⅰ fracture behavior of tight sandstone[J].Journal of Mining Science and Technology,7(6):700-709.
[7]
FanXiaodong, LiXiang, TaoMing,et al,2021.Study on mode Ⅰ and mode Ⅱ fracture characteristics of granite under different thermal shock process[J].Gold Science and Technology,29(6):834-842.
[8]
FengG, KangY, ChenF,et al,2018.The influence of temperatures on mixed-mode (Ⅰ+Ⅱ) and mode-Ⅱ fracture toughness of sandstone[J].Engineering Fracture Mechanics,189:51-63.
[9]
FengRuoqi, ZhuZheming, FanYong,2016.Research on mixed-mode fracture properties and criteria by using sandstone SCB specimen[J].Advanced Engineering Sciences,48(Supp.1):121-127.
[10]
GuoY, LiuD K, RaoJ Y,et al,2025.Fracture properties of dolomite and prediction of fracture toughness based on BP-ANN[J].Scientific Reports,15:5680.
[11]
HuX Y, YuS Y, GaoY,et al,2024.Experimental and meshless numerical simulation on the crack propagation processes of marble SCB specimens[J].Engineering Fracture Mechanics,308:110354.
[12]
HuangYanhua, TaoRan, HanYuanyuan,et al,2024.Experimental study of the temperature influence on mode Ⅰ fracture toughness of sandstone specimens with different porosities[J].Journal of Mining and Safety Engineering,41(2):430-436.
[13]
KuruppuM D, ChongK P,2012.Fracture toughness testing of brittle materials using semi-circular bend(SCB) specimen[J].Engineering Fracture Mechanics,91:133-150.
[14]
LancasterI M, KhalidH A, KougioumtzoglouI A,2013.Extended FEM modelling of crack propagation using the semi-circular bending test[J].Construction and Building Materials,48:270-277.
[15]
LiErqiang, ZhangLongfei, ZhaoNingning,et al,2022.Experimental investigation on mode Ⅰ fracture behaviors of layered slate under condition of air-weathering[J].Journal of Central South University(Science and Technology),53(4):1406-1415.
[16]
LiXiang, HuaiZhen, LiXibing,et al,2019.Study on fracture characteristics and mechanical properties of brittle rock based on crack propagation model[J].Gold Science and Technology,27(1):41-51.
[17]
LiYifan, DongShiming, PanXin,et al,2018.Experimental study of mixed-mode Ⅰ/Ⅲ fracture of sandstone[J].Rock and Soil Mechanics,39(11):4063-4070.
[18]
LimI L, JohnstonI W, ChoiS K,1993.Stress intensity factors for semi-circular specimens under three-point bending[J].Engineering Fracture Mechanics,44(3):363-382.
[19]
LonginosS N, HazlettR,2025.Cryogenic fracturing efficacy in granite rocks:Fracture toughness and Brazilian test differences after elevated temperatures and liquid nitrogen exposure[J].Geoenergy Science and Engineering,244:213436.
[20]
DunboLü, ZhangFan, ZhangYifeng,et al,2022.Experimental study on three-point bending of granite after cryogenic freeze-thaw cycles at -160 ℃[J].Journal of Glaciology and Geocryology,44(6):1796-1806.
[21]
MoësN, DolbowJ, BelytschkoT,1999.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,46(1):131-150.
[22]
OwensA T, TippurH V,2021.Measurement of mixed-mode fracture characteristics of an epoxy-based adhesive using a hybrid digital image correlation (DIC) and finite elements (FE) approach[J].Optics and Lasers in Engineering,140:106544.
[23]
WangZhecheng, ZhangYun, YuJun,et al,2019.Calculation of stress intensity factor based on the extended finite element method[J].Journal of Nanjing University (Natural Science),55(3):361-369.
[24]
WuQ H, XieC L, XieY S,et al,2022.Extending application of asymmetric semi-circular bend specimen to investigate mixed mode Ⅰ/Ⅱ fracture behavior of granite[J].Journal of Central South University,29(4):1289-1304.
[25]
XieY S, CaoP, JinJ,et al,2017.Mixed mode fracture analysis of semi-circular bend (SCB) specimen:A numerical study based on extended finite element method[J].Computers and Geotechnics,82:157-172.
[26]
YangC, ZhouK P, XiongX,et al,2021.Experimental investigation on rock mechanical properties and infrared radiation characteristics with freeze-thaw cycle treatment[J].Cold Regions Science and Technology,183:103232.
[27]
ZhangC X, LiD Y,2024.Effect of loading rate on energy and acoustic emission characteristics of tensile fracture and shear fracture for red sandstone[J].Theoretical and Applied Fracture Mechanics,133:104531.
[28]
ZhangYu, WangWenji, SunJiaqi,et al,2023.Fracture performances of bedding structure slate under dynamic loading[J].Gold Science and Technology,31(5):803-810.
[29]
ZhaoWenfeng, ZhangSheng, WangMeng,et al,2020.Experimental study on testing rock fracture toughness with two types of disc specimens recommended by ISRM[J].Journal of Experimental Mechanics,35(4):702-711.
[30]
ZhaoYixin, SunZhuang, LiuBin,2019.Comparative study of semi-circular bending tests for modesⅠand Ⅱ fracture cha-racteristics of Xinzhouyao bituminous coal[J].Chinese Jo-urnal of Rock Mechanics and Engineering,38(8):1593-1604.
[31]
ZhouH, GuoW H, ZhouY,2023.Investigation on stress intensity factor and fracture characteristics of SCB sandstone containing prefabricated cracks[J].Theoretical and Applied Fracture Mechanics,124:103754.
[32]
ZhouY, ZhouH, ZouS Z,et al,2024.Investigation of dynamic three-point bending fracture properties of SCB sandstone[J].Theoretical and Applied Fracture Mechanics,129:104232.
[33]
ZuoJ P, YaoM H, LIY J,et al,2019.Investigation on fracture toughness and micro-deformation field of SCB sandstone including different inclination angles cracks[J].Engineering Fracture Mechanics,208:27-37.
[34]
ZuoJianping, XieHeping, LiuYujie,et al,2010.Investigation on fracture characteristics of sandstone after thermal effects through three-bending point experiments[J].Chinese Journal of Solid Mechanics,31(2):119-126.