基于NF-κB通路探究中医药干预脓毒症的研究进展
Research advances of traditional Chinese medicine interventions for sepsis via the NF-κB pathway
Sepsis, a systemic inflammatory response syndrome triggered by infection, remains a critical condition with limited pharmacological interventions despite current reliance on ventilatory support, continuous renal replacement therapy, and nutritional management. Traditional Chinese Medicine (TCM) demonstrates distinctive advantages in modulating nuclear factor-kappa B (NF-κB), a pivotal signaling pathway implicated in sepsis pathogenesis. Substantial evidence indicates that NF-κB serves as a central hub for inflammatory cascades during sepsis, orchestrating the release of multiple cytokines and driving organ-damaging inflammation. Recent studies establish the NF-κB pathway as a key therapeutic target for TCM in sepsis management. TCM interventions effectively attenuate inflammatory responses through precise regulation of this pathway. This review synthesizes current evidence from global literature, systematically examining TCM-derived active compounds, compound formulations, and clinical preparations that ameliorate sepsis by targeting NF-κB signaling. Our analysis provides novel theoretical insights to inform future TCM-based sepsis therapeutics.
traditional Chinese medicine / sepsis / NF-κB / organ injury / review
| [1] |
TANG J B, LI X H, LI W, et al. The protective effect of octanoic acid on sepsis: a review[J]. Nutr Rev, 2025, 83(3): e1270-e1285. |
| [2] |
TORRES L K, PICKKERS P, van der POLL T. Sepsis-induced immunosuppression[J]. Annu Rev Physiol, 2022, 84: 157-181. |
| [3] |
SYGITOWICZ G, SITKIEWICZ D. Molecular mechanisms of organ damage in sepsis: an overview[J]. Braz J Infect Dis, 2020, 24(6): 552-560. |
| [4] |
WEN X Y, XIE B, YUAN S Y, et al. The "self-sacrifice" of ImmuneCells in sepsis[J]. Front Immunol, 2022, 13: 833479. |
| [5] |
HSU C G, CHÁVEZ C L, ZHANG C Y, et al. The lipid peroxidation product 4-hydroxynonenal inhibits NLRP3 inflammasome activation and macrophage pyroptosis[J]. Cell Death Differ, 2022, 29(9): 1790-1803. |
| [6] |
LI Z H, PAN H T, YANG J H, et al. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models[J]. Phytomedicine, 2023, 108: 154545. |
| [7] |
JASIŃSKI T, ZDROJKOWSKI Ł, FERREIRA-DIAS G, et al. Molecular mechanism of equine endometrosis: the NF-κB-dependent pathway underlies the ovarian steroid receptors' dysfunction[J]. Int J Mol Sci, 2022, 23(13): 7360. |
| [8] |
LIU Y M, WANG J Z, ZHANG X M. An update on the multifaceted role of NF-kappaB in endometriosis[J]. Int J Biol Sci, 2022, 18(11): 4400-4413. |
| [9] |
GONG Y Z, WANG J Y. Monotropein alleviates sepsis-elicited acute lung injury via the NF-κB pathway[J]. J Pharm Pharmacol, 2023, 75(9): 1249-1258. |
| [10] |
LIU J, WU Y H, ZHANG Z L, et al. Tanshinone IIA improves sepsis-induced acute lung injury through the ROCK2/NF-κB axis[J]. Toxicol Appl Pharmacol, 2022, 446: 116021. |
| [11] |
WANG J, CHEN J, LI Z, et al. The negative feedback loop of NF-κB/miR-202-5p/HMGB2 attenuates sepsis induced acute kidney injury[J]. Int Immunopharmacol, 2024, 142(Pt A): 113050. |
| [12] |
XU R M, WANG D W, SHAO Z Y, et al. Neoastilbin ameliorates sepsis-induced liver and kidney injury by blocking the TLR4/NF-κB pathway[J]. Histol Histopathol, 2024, 39(10): 1329-1342. |
| [13] |
WANG L, FEI W Y, SONG Q Y. Betulinic acid reduces inflammation in rats with sepsis-induced myocardial dysfunction by inhibiting TLR4/MYD88/NF-κB signaling pathway[J]. Chem Biol Drug Des, 2024, 103(2): e14432. |
| [14] |
DUAN M N, JIE J, LI C X L, et al. Echinatin alleviates sepsis severity through modulation of the NF-κB and MEK/ERK signaling pathways[J]. Biomed Pharmacother, 2024, 179: 117359. |
| [15] |
刘丽娟, 吴亚运, 赵亚, 落新妇苷的稳定性、药动学及制剂学研究进展[J]. 中华中医药学刊, 2023, 41(12): 198-202. |
| [16] |
FANG Z, WANG G J, HUANG R, et al. Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway[J]. Phytother Res, 2024, 38(2): 1044-1058. |
| [17] |
SINGH S, GUPTA P, MEENA A, et al. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders[J]. Food Chem Toxicol, 2020, 145: 111708. |
| [18] |
CHANG B B, WANG Z, CHENG H, et al. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis[J]. Innate Immun, 2024, 30(1): 11-20. |
| [19] |
DI PETRILLO A, ORRÙ G, FAIS A, et al. Quercetin and its derivates as antiviral potentials: a comprehensive review[J]. Phytother Res, 2022, 36(1): 266-278. |
| [20] |
ZHAO H, LIN X, CHEN Q F, et al. Quercetin inhibits the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve sepsis-induced cardiomyopathy[J]. Toxicol Appl Pharmacol, 2023, 477: 116672. |
| [21] |
ZHAO Q, ZHONG J, BI Y, et al. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK[J]. Phytomedicine, 2020, 78: 153306. |
| [22] |
FU W, FANG X W, WU L D, et al. Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway[J]. Korean J Physiol Pharmacol, 2022, 26(6): 511-518. |
| [23] |
国家药典委员会. 中华人民共和国药典: 2020年版一部[M]. 北京: 中国医药科技出版社, 2020: 70. |
| [24] |
FENG D L, GUO R Y, LIAO W, et al. Plantamajoside alleviates acute sepsis-induced organ dysfunction through inhibiting the TRAF6/NF-κB axis[J]. Pharm Biol, 2023, 61(1): 897-906. |
| [25] |
HU R, WANG M Q, NI S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. Eur J Pharmacol, 2020, 867: 172797. |
| [26] |
LIAO R X, ZHAO P, WU J M, et al. Salidroside protects against intestinal barrier dysfunction in septic mice by regulating IL‑17 to block the NF‑κB and p38 MAPK signaling pathways[J]. Exp Ther Med, 2023, 25(2): 89. |
| [27] |
TANG X H, TANG H M. Cornus iridoid glycoside alleviates sepsis-induced acute lung injury by regulating NF-κB and Nrf2/HO-1 pathways[J]. Allergol Immunopathol (Madr), 2022, 50(5): 121-128. |
| [28] |
KHAN M A, TANIA M. Cordycepin and kinase inhibition in cancer[J]. Drug Discov Today, 2023, 28(3): 103481. |
| [29] |
ZHANG Y D, CHENG J, SU Y F, et al. Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition[J]. J Pharm Pharmacol, 2022, 74(2): 227-235. |
| [30] |
ZHANG J H, XIN H L, XU Y M, et al. Morinda officinalis how. - A comprehensive review of traditional uses, phytochemistry and pharmacology[J]. J Ethnopharmacol, 2018, 213: 230-255. |
| [31] |
GUO R, LI L, SU J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases[J]. Drug Des Devel Ther, 2020, 14: 4735-4748. |
| [32] |
YU H Y, WANG Y, HE Z D, et al. Albiflorin ameliorates mesangial proliferative glomerulonephritis by PI3K/AKT/NF-κB pathway[J]. Hum Exp Toxicol, 2023, 42: 9603271221145386. |
| [33] |
WEI Q Y, LIN J Q, LI Y M. Albiflorin attenuates sepsis-induced acute lung injury (ALI) via the TLR-4/NF-κB pathway[J]. J Funct Foods, 2023, 107: 105633. |
| [34] |
LI X B, XU R M, ZHOU K G, et al. Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway[J]. J Mol Histol, 2024, 55(5): 687-698. |
| [35] |
SONG B H, ZHOU W H. Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway[J]. Brain Res Bull, 2022, 189: 44-56. |
| [36] |
MU H J, SUN Y L, YUAN B, et al. Betulinic acid in the treatment of breast cancer: application and mechanism progress[J]. Fitoterapia, 2023, 169: 105617. |
| [37] |
吴建棋, 张世安, 孙中洋. 白果内酯通过抑制丝裂原活化蛋白激酶/核因子-κB通路减轻脓毒症诱发肝损伤实验研究[J]. 陕西医学杂志, 2024, 53(9): 1166-1171. |
| [38] |
张建成, 张世安. 酸枣仁皂苷A通过抑制核因子-κB通路减轻小鼠脓毒症所致肝损伤实验研究[J]. 陕西医学杂志, 2024, 53(9): 1177-1181. |
| [39] |
DAO L, LIU H D, XIU R Z, et al. Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination[J]. Phytomedicine, 2024, 125: 155325. |
| [40] |
WANG Y T, ZHANG L N, LYU X C, et al. Tomatidine provides mitophagy-independent neuroprotection after ischemic injury[J]. FEBS Open Bio, 2021, 11(9): 2647-2654. |
| [41] |
XU B, HUANG M, QI H, et al. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways[J]. Mol Genet Genomics, 2024, 299(1): 14. |
| [42] |
HOU Q, HE W J, WU Y S, et al. Berberine: a traditional natural product with novel biological activities[J]. Altern Ther Health Med, 2020, 26(S2): 20-27. |
| [43] |
CHEN L W, LIU X Y, WANG X T, et al. Berberine alleviates acute lung injury in septic mice by modulating Treg/Th17 homeostasis and downregulating NF-κB signaling[J]. Drug Des Devel Ther, 2023, 17: 1139-1151. |
| [44] |
ZHANG W, CHEN H Z, XU Z Y, et al. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury[J]. Int Immunopharmacol, 2023, 122: 110563. |
| [45] |
ZHANG X, YUAN S L, FAN H, et al. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner[J]. Chem Biol Interact, 2024, 396: 111030. |
| [46] |
LI W, LIN M R, LI J P, et al. Xijiao Dihuang decoction protects against murine sepsis-induced cardiac inflammation and apoptosis via suppressing TLR4/NF-κB and activating PI3K/AKT pathway[J]. J Inflamm Res, 2024, 17: 853-863. |
| [47] |
温剑艺, 王首红, 刘艳红, 四磨汤通过调控NF-κB信号通路改善重度脓毒症大鼠结肠上皮细胞屏障功能障碍炎症状态作用研究[J]. 陕西中医, 2023, 44(10): 1365-1371. |
| [48] |
冯萍, 吴深宝, 季峰. 柴芍承气汤对脓毒症大鼠胰腺损伤的影响及机制研究[J]. 中国中医药信息杂志, 2023, 30(7): 114-118. |
| [49] |
易琼, 戴飞跃, 王建湘, 清瘟败毒饮抑制TLR4/NF-κ B通路调控小鼠肺泡巨噬细胞自噬减轻脓毒症肺损伤的实验研究[J]. 中国中西医结合杂志, 2023, 43(3): 315-322. |
| [50] |
卓玉珍, 杨磊, 鹿燕敏, 凉血活血方通过抑制NLRP3炎性小体活化保护脓毒症急性肺损伤小鼠的实验研究[J]. 中国中西医结合外科杂志, 2022, 28(2): 173-178. |
| [51] |
黄壑霏, 彭晓洪, 黄亚秀, 茯苓四逆汤调节TLR-4/NF-κB通道对脓毒症大鼠心肌抑制的保护机制研究[J]. 中医药临床杂志, 2021, 33(9): 1745-1749. |
| [52] |
何淼, 沈晓红, 熊旭东, 炎调方对脓毒症急性肺损伤大鼠NF-κB信号通路影响的时效关系研究[J]. 药物评价研究, 2020, 43(12): 2410-2415. |
| [53] |
陆佳敏, 魏久翔, 邵旭鹏, 基于IRAK1/TRAF6/NF-κB通路探讨参附注射液治疗大鼠脓毒症心功能障碍的作用机制[J]. 中医学报, 2024, 39(5): 1029-1035. |
| [54] |
张志斌, 李瑞彤, 郑卫伟, 血必净注射液调控HMGB1/TLR4/NF-κB通路对脓毒症小鼠肺损伤的保护作用[J]. 徐州医科大学学报, 2024, 44(4): 254-260. |
国家自然科学基金(82460926)
国家自然科学基金(82460889)
天津市名中医传承工作室建设项目(tjmzy2403)
/
| 〈 |
|
〉 |