PDF (1713K)
摘要
目的 蛛网膜下腔出血是一种很严重的疾病,有着较高的致死率和致残率。本研究旨在研发一种模型预测蛛网膜下腔出血的院内病死率。方法 本研究数据来自于2014年至2018年就诊于北京大学10所附属医院的患者的相关资料,最终纳入797例诊断为蛛网膜下腔出血的患者。采用单变量和多变量Logistic回归,探究影响蛛网膜下腔出血预后的影响因素,用列线图来预测院内病死率。结果 在纳入的患者中,院内病死率为7.53%。影响因素包括动脉瘤、心脏病、脑疝、脑内血肿、昏迷、肺部感染、呼吸衰竭和肺炎(P值均<0.05)。预测模型的曲线下面积为0.860 (95%CI:0.809~0.911)。结论 本研究构建了一个能够预测蛛网膜下腔患者的院内病死率的模型。
Abstract
Objective Subarachnoid hemorrhage is a severe disease with high mortality and disability rate. The aim of this study is to develop a model to predict the in-hospital mortality of subarachnoid hemorrhage. Methods Seven hundred and ninty-seven patients with subarachnoid hemorrhage are extracted from 10 hospitals affiliated to Peking University during a 5-year period (2014-2018). A univariate Logistic regression and a multivariate Logistic regression are used to find the predictive factors for subarachnoid hemorrhage. A nomogram was constructed to predict the mortality. Results Of the included patients, the mortality rate is 7.53%. The predictors are aneurysm, heart disease, brain herniation, intracerebral hematoma, coma, pulmonary infection, respiratory failure and pneumonia (P<0.05). The area under the curve of the nomogram is 0.860 (95%CI:0.809-0.911). Conclusion An accurate nomogram is developed to predict the in-hospital mortality of patients with subarachnoid hemorrhage. It will help reduce the mortality rates.
关键词
蛛网膜下腔出血
/
列线图
/
院内病死率
/
风险模型
Key words
subarachnoid hemorrhage
/
nomogram
/
hospital mortality
/
risk model
蛛网膜下腔出血院内病死率的预测模型[J].
首都医科大学学报, 2024, 45(2): 348-355 DOI:10.3969/j.issn.1006-7795.2024.02.024