2023年4月在黑龙江省小兴安岭地区,以2002年采种育苗2004年营建的水曲柳子代测定林为研究对象,采用完全随机区组设计,前3 a进行人工抚育,之后未受到其他人工干扰。按照国际树轮库标准,对样地中胸径10 cm以上、生长良好、无病害的水曲柳进行全面采样。用内径为5.15 mm的生长锥在每株样木胸高处(1.3 m)采集南北各1个树芯[10],编号带回试验室后用乳白胶固定在木槽中,通风晾干2~3 d。分别用400、600、800、1 000目砂纸打磨,直到水曲柳年轮清晰。在显微镜下进行交叉定年,运用Lintab6.0结合TASP-Win(time series analysis and presentation for windows)软件对年轮宽度逐年进行测量,精确到0.001 mm。用COFECHA(data quality control for crossdating and measurement)程序对测量和交叉定年结果进行校 验、剔除不能正常交叉定年的序列[11]。利用ARSTAN(a tree-ring standardization program based on detrending and autoregressive time series modeling)程序中的负指数函数对保留下来的树轮数据进行去趋势和标准化,并使用双加权平均值法将去趋势序列组合成标准化的小兴安岭地区水曲柳家系年轮宽度标准年表[12]。
每个家系中筛选出6个来自不同采样树南向状况良好、具有代表性的样本,一共有52个家系(共计1~77号家系)满足条件。用1 200目砂纸对样本进行打磨,保证表面干净平整,再用白色粉笔填充导管[13],用于木质部导管特征分析[14],如图1所示。使用Epson Scan 2照片扫描仪以2 400 dpi分辨率和48位色深扫描样本。使用Image-Pro Plus结合Roxas对切向宽度为 2 mm范围内的木质部导管进行测量[15]。结合人工辅助检查纠正[16],获取全轮、早材和晚材的年轮宽度(ring width,RW)、导管数量(number of vessels,VN)、平均导管面积(mean vessel area,MVA)、总导管面积(total vessel area,TVA)、导管占比(percentage of conductive area within xylem,RCTA)、导管密度(vessel density,VD)、特异性导水率(specific theoretical hydraulic conductivity,Ks)和理论导水率(theoretical hydraulic conductivity,Kh)等数据[17-18]。
由表1可以看出,小兴安岭地区水曲柳标准年表信噪比(signal to noise ratio,SNR)为7.488,说明样本具有丰富的环境信息。样本总体代表性(express population signal,EPS)为0.882(>0.85),样本所含信号基本能代表总体特征,标准年表质量较高。小兴安岭地区的水曲柳家系年轮宽度指数与形成层年龄的回归方程为y=-0.01x2+0.17x+0.51,R2=0.587,回归效果较好,如图3(a)所示。2010年和2012年小兴安岭水曲柳家系径向生长量相比低于平均值(mean为1.00),分别下降了28.4%和28.1%,2013—2017年生长较好且稳定,2017年之后呈下降趋势,如图3(b)所示。在生长初期,水曲柳家系的个体之间由于间距较大或资源相对充足,其径向生长速度较快;但随着树木的成长,各植株间的距离逐渐减小,导致对光、水分和养分的竞争加剧,从而抑制了每个个体的进一步径向生长。这可能是2017年后,即使在这一段时期并没有受到气候事件的影响,水曲柳家系径向生长仍呈下降趋势的原因。2009年年轮宽度的下降主要是由于干旱事件造成的(图2(b))。
温度因子是影响小兴安岭地区水曲柳木质部解剖参数主要的气候因子,这一结论与张琦等[39]的研究结果一致。2010年和2012年发生的低温事件对水曲柳的径向生长产生了抑制作用。低温年水曲柳整轮的RW、MVA、TVA和Kh比非低温年份下降了25.5%、38.2%、21.8%和55.1%,VD上升了64.1%。低温事件会导致树木的叶、芽、枝、干及根茎等不同程度受害[40],特别是生长初期的冻害对树木后期的生长具有十分重大的影响。树木在遭受冻害时,冷冻会影响木质部栓塞的脆弱性[41]。导管容易受到霜冻引起栓塞,进而增大水力传导率损失(the percentage loss of hydraulic conductivity,PLC)的风险[42]。树木必须投入大量的同化物来恢复其液压系统[43],以保证树木正常运输水分的能力。同化物的减少,降低了后期树木生长营养物质的供给,影响树木后期的生长。低温事件对树木叶片的影响也是显而易见的,一方面,低温冻害对树木的叶片造成损伤[44];另一方面,在低温环境下,叶片中脱落酸 (abscisic acid,ABA)增加,大大提高叶子死亡风险[45]。叶片损伤和ABA含量增加会导致叶子更快地衰老和死亡,死亡的叶片减少了树木进行光合作用的有效面积,降低了树木合成有机物质的能力。这些影响累积起来会减少树木木质部的生长速度,甚至削弱树木整体的生长势。当温度过低时,树木的根系活动也会受到限制、树木的各项生理活动就会延迟,相应树木的生长期变短,树木形成窄年轮的概率上升[46]。
WANGQ F, SHENJ, ZENGB,et al.Effects of environmental conditions on the emission and odor-active compounds from Fraxinus mandshurica Rupr[J].Environmental Science and Pollution Research,2022,29(20):30459-30469.
WANGH Y, SHENJ, WANGQ F,et al.Effects of environmental factors on VOC/VVOC release and odor characteristics of painted manchurian ash[J].Journal of Northeast Forestry University,2022,50(4):104-110.
WANGK, RENY J, WUE T,et al.Effects of Larix olgensis and Fraxinus mandshurica seedlings in mixed plantation on the occurrence of Adelges laricis laricis[J].Journal of Northeast Forestry University,2023,51(1):115-119.
[6]
王绍武,赵宗慈.中国夏季低温冷害[J].自然资源,1985(1):54-59.
[7]
WANGS W, ZHAOZ C.Cold damage during summer in China[J].Natural Resources,1985(1):54-59.
ZHANGX, PANL L, KWONS,et al.Climatological response of radial growth for Pinus sylvestris var.mongolica to drought in Hulun Buir Sandland,Inner Mongolia of northern China[J].Journal of Beijing Forestry University,2018,40(7):27-35.
[12]
VONARX G, ARCHERS R, HUGHESM K.Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture[J].Annals of Botany,2012,109(6):1091-1100.
[13]
FONTIP, VONARX G, GARCÍA-GONZÁLEZI,et al.Studying global change through investigation of the plastic responses of xylem anatomy in tree rings[J].New Phytologist,2010,185(1):42-53.
ZHANGD X.The influence of natural geographical condition of Dailing area in Yichun city to the distribution of plant community[J].Wuhan Botanical Research,1983(2):229-236.
[16]
YUANS, JIANGY, CUIM H,et al.Age-specific response to climate factors and extreme drought events in radial growth of Picea likiangensis [J].Science of the Total Environment,2024,946:174257.
[17]
HOLMESR L.Computer-assisted quality control in tree-ring dating and measurement[J].Tree-Ring Society,1983,43:51-67.
[18]
COOKE R.A time series analysis approach to tree ring standardization (dendrochronology,forestry,dendroclimatology,autoregressive process)[M].Tucson USA:The University of Arizona,1985.
[19]
VENEGAS-GONZÁLEZA, VONARX G, CHAGASM P,et al.Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability[J].Trees,2015,29(2):423-435.
[20]
SONGW Q, ZHAOB Q, MUC C,et al.Moisture availability influences the formation and characteristics of earlywood of Pinus tabuliformis more than latewood in northern China[J].Agricultural and Forest Meteorology,2022,327:109219.
[21]
NOLAP, BRACCOF, ASSINIS,et al.Xylem anatomy of Robinia pseudoacacia L.and Quercus robur L.is differently affected by climate in a temperate alluvial forest[J].Annals of Forest Science,2020,77(1):8.
[22]
CAMPELOF, NABAISC, GUTIÉRREZE,et al.Vessel features of Quercus ilex L.growing under Mediterranean climate have a better climatic signal than tree-ring width[J].Trees,2010,24(3):463-470.
[23]
ZHUL J, LIUS G, ARZACA,et al.Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas[J].Agricultural and Forest Meteorology,2021,307:108523.
BAIY X, YUAND Y, WANGX C,et al.Comparison of characteristics of tree trunk xylem vessels among three species of betula in northeast China and their relationships with climate[J].Chinese Journal of Plant Ecology,2023,47(8):1144-1158.
LIJ, RENG Y, ZHANY J.Discussion on threshold determination in defining extreme temperature indices[J].Advances in Meteorological Science and Technology,2013,3(5):36-40.
ZHONGY, ZHENGJ C, QIUH Y,et al.Differences in response of radial growth to extreme droughts for the main constructive tree species on sunny and shady slopes in eastern Tibet[J].Acta Ecologica Sinica,2024(3):1221-1230.
[30]
ZHUL J, ZHANGJ, CAMAREROJ J,et al.Drivers and spatiotemporal patterns of post-drought growth resilience of four temperate broad-leaved trees[J].Agricultural and Forest Meteorology,2023,342:109741.
SUNH Y, LIT S, ZHOUC F.Sapling test of filial generation and family selection of high seed yielding clones of Pinus armandii [J].Journal of Southwest Forestry College,2007(1):37-40.
WANGF, MAM, WANGJ X,et al.Analysis of genetic variation and selection of superior families and clones of Larix kaempferi [J].Forest Engineering,2023,39(4):48-57.
WANGT, YUD, LIJ F,et al.Advances in research on the relationship between climatic change and tree-ring width[J].Chinese Journal of Plant Ecology,2003(1):23-33.
DUY J, LIS J, WANGL,et al.Responses of radial growth of Fraxinus mandshurica from different provenances to climate at Maoershan in Northeast China[J].Chinese Journal of Applied Ecology,2024,35(5):1159-1168.
YINH, LIUH B, GUOP W,et al.An analysis on the climatic response mechanism of the growth of Pinus koraiensis in the lower mountains of Xiaoxing' anling[J].Acta Ecologica Sinica,2009,29(12):6333-6341.
QIUY, WANGZ P, ZHANGD Y,et al.Responses of radial growth of different tree species to abrupt temperature change in the northern Greater Khingan Mountains,China[J].Chinese Journal of Applied Ecology,2024,35(11):2933-2941.
LIW Q, JIANGY, ZHAOS D,et al.Response of tree-ring width chronology of Pinus tabulaeformis to multi-scale standardized precipitation index (SPI_n) in the Liupan Mountain Area[J].Acta Ecologica Sinica,2017,37(10):3365-3374.
WANGL L, GOUX H, XIAJ Q,et al.Research progress on cambial activity of trees and the influencing factors[J].Chinese Journal of Applied Ecology,2021(10):3761-3770.
CAIM, YUD S, LUJ.Divergent responses of radial growth of Larix kongboensis to temperature and precipitation in the Shergyla Mountain[J].Journal of Northwest Forestry University,2024,39(1):117-124.
RONGW T, XINGF W, YIQ F.Effects of climatic factors on leaf discoloration peak period of 5 species in Macao[J].Journal of Tropical and Subtropical Botany,2020,28(6):574-582.
[51]
QINY Y, GANX M, JIANGX X,et al.Dynamics in leaf stomatal conductance of Spartina alterniflora in mangrove habitats[J].Chinese Journal of Ecology,2009,28(10):1991-1995.
[52]
POLJANŠEKS, CEGLARA, LEVANIČT.Long-term summer sunshine/moisture stress reconstruction from tree-ring widths from Bosnia and Herzegovina[J].Climate of the Past,2013,9(1):27-40.
YANGR Q, FANZ X, LIZ S,et al.Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain,Northwest Yunnan,China[J].Acta Ecologica Sinica,2018,38(24):8983-8991.
WANGZ C, LYUY H, WANGW B,et al.Individual diameter growth of natural Larix gmelinii forests with different ages and their responses to climate change[J].Forest Engineering,2024,40(4):39-48.
[57]
ALVAREZ-URIAP, KÖRNERC.Low temperature limits of root growth in deciduous and evergreen temperate tree species[J].Functional Ecology,2007,21(2):211-218.
[58]
WEIX X, PENGJ F, LIJ B,et al.Climate-growth relationships of Pinus tabuliformis along an altitudinal gradient on Baiyunshan Mountain,Central China[J].Journal of Forestry Research,2024,35(1):202-212.
MAOM, PANX B, BAIJ L,et al.Relationship between soil temperature and moisture and root growth of tobacco in Panzhihua city[J].Hubei Agricultural Sciences,2022,61(15):107-111.
ZHANGQ, YUAND Y, WANGX C.Age effect of xylem anatomical characteristics of young and old Korean pine and its response to climate change[J].Acta Ecologica Sinica,2024(11):4876-4888.
WUJ, WANGZ Q, LIUX F.Frost injury to young Tilia amurensis plantation[J].Journal of Northeast Forestry University,2002(6):6-10.
[65]
STUARTS A, CHOATB, MARTINK C,et al.The role of freezing in setting the latitudinal limits of mangrove forests[J].New Phytologist,2007,173(3):576-583.
[66]
AMÉGLIOT, BODETC, LACOINTEA,et al.Winter embolism,mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J].Tree physiology,2002,22(17):1211-1220.
[67]
ARIASN S, SCHOLZF G, GOLDSTEING,et al.The cost of avoiding freezing in stems:trade-off between xylem resistance to cavitation and supercooling capacity in woody plants[J].Tree Physiology,2017,37(9):1251-1262.
[68]
FERNÁNDEZ-PÉREZL, VILLAR-SALVADORP, MARTÍNEZ-VILALTAJ,et al.Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance,not with vulnerability to freezing-induced xylem embolism[J].Tree Physiology,2018,38(4):507-516.
[69]
MCADAMS A M, KANEC N, REYESJ A M,et al.An abrupt increase in foliage ABA levels on incipient leaf death occurs across vascular plants[J].Plant Biology,2022,24(7):1262-1271.
ZHANGX L, CUIM X, MAY J,et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer,Great Xing′an Mountains[J].Chinese Journal of Applied Ecology,2010,21(10):2501-2507.
LIZ M, WANGC K.Research progress on responses of xylem of woody plants to freeze-thaw embolism[J].Chinese Journal of Plant Ecology,2019,43(8):635-647.
[74]
ARAUJOM, RADAF,ELY F.Freezing resistance and xylem anatomy in low and high elevation populations of Senecio formosus Kunth in the tropical Andes[J].Plant Ecology,2023,224(2):157-171.
[75]
GEA-IZQUIERDOG, BATTIPAGLIAG, GÄRTNERH,et al.Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates[J].Iawa Journal,2013,34(2):109-126.
[76]
GARCÍA-CERVIGÓNA I, FAJARDOA, CAETANO-SÁNCHEZC,et al.Xylem anatomy needs to change,so that conductivity can stay the same:Xylem adjustments across elevation and latitude in Nothofagus pumilio [J].Annals of Botany,2020,125(7):1101-1112.
[77]
NOLFM, PAGITZK, MAYRS.Physiological acclimation to drought stress in Solidago canadensis [J].Physiologia Plantarum,2014,150(4):529-539.
SHENJ Y, LIS F, HUANGX B,et al.Ecological resilience and growth degradation of Pinus yunnanensis at different altitudes in Jinsha River Basin[J].Scientia Silvae Sinicae,2020,56(6):1-11.
[80]
DUH, YEM.Response of radial growth of Populus euphratica Oliv.to extreme low temperature in the lower reaches of Tarim River[J].Journal of Biology,2020,37(4):50.
[81]
TANGL, HUF, WANGH.Influences of low temperature on the morphology of Zizyphus mauritiana Lam.in seeding stage[J].Chinese Journal of Ecology,2016,35(4):864-870.
[82]
CHARRIERG, COCHARDH, AMEÉLIOT.Evaluation of the impact of frost resistances on potential altitudinal limit of trees[J].Tree Physiology,2013,33(9):891-902.
[83]
KIDDK R, COPENHEAVERC A, ZINK-SHARPA.Frequency and factors of earlywood frost ring formation in jack pine (Pinus banksiana) across northern lower Michigan[J].Ecoscience,2014,21(2):157-167.
[84]
PANAYOTOVM P, ZAFIROVN, CHERUBINIP.Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria[J].Trees-Structure and Function,2013,27(1):211-227.
[85]
SONGX Y, GAOT, AIM Y,et al.Experimental investigation of freeze injury temperatures in trees and their contributing factors based on electrical impedance spectroscopy[J].Frontiers in Plant Science,2024,15:1326038.
ZHANGZ H, FANZ H, JIAOR,et al.Physiological response characteristics of trees under low temperature stress[J].Journal of Temperate Forestry Research,2024,7(1):38-41,6.
HEM, WEIJ S, SHIL,et al.The response of radial growth and death of Populus davidiana to regional climate change in southern Greater Xing 'an Mountains[J].Chinese Journal of Ecology,2018,37(11):3237-3244.
WANGF, WANGQ, ZHAOX Y.Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J].Molecular Plant Breeding,2019,17(15):5144-5153.
[92]
QIUN, ZHOUF, ZHANGS,et al.Effects of simulated cold spell in later spring on leaf vigor of Populus tomentosa [J].Scientia Silvae Sinicae,2014,50(7):17-22.