In order to more accurately describe the failure pattern of mining trucks in open-pit mines and improve the accuracy of reliability analysis, a new alpha transformation is constructed. On this basis, a four-parameter new alpha transformed q-Weibull distribution model is proposed, and the parameters of the model are estimated using a combination of dung beetle optimization algorithm and maximum likelihood estimation. The rationality and effectiveness of using the new alpha transformed q-Weibull distribution model to evaluate the reliability of mining trucks are verified through comparison of examples. Numerical test results show that using the model to analyze the time between faults of mining trucks and formulating corresponding preventive maintenance cycles can better ensure the safe and stable operation of mining trucks.
在非广延统计力学的背景下,PICOLI等[12]将威布尔分布推广为q-威布尔分布(q-Weibull distribution,q-Weibull)。与只能描述单调失效率函数的威布尔分布相比,q-威布尔分布能模拟失效率的各种类型,包括单峰、浴盆型、单调型(单调递减、递增)和常数。此外,q-威布尔分布能够呈现短尾分布和长尾分布,充分拟合具有不同形状和尾部属性的数据集。樊立天等[13]利用q-威布尔分布对医疗设备进行可靠性分析,验证了q-威布尔分布的有效性。MACHADO DE ASSIS等[14]利用q-威布尔对水电设备的主要可靠性参数进行了计算,表明q-威布尔分布对故障现象的建模更接近实际情况,可以更好地规划维护和更换策略。MARCHETTI等[15]利用q-威布尔分布对油气设施安全屏障老化问题进行了研究。然而以往的研究大多是基于原始q-威布尔分布模型进行计算,只可控制分布的尾部,没有针对模型的前端进行改进,并且仍未有研究利用q-威布尔分布对露天矿矿用卡车进行可靠性分析。
为了衡量分布拟合优良性,结合分布拟合度和参数数量,采用负对数似然(negative log-likelihod,NLL)、改正的赤池信息准则(consistent Akaike information criterion,CAIC)和Hannan-Quin信息准则(Hannan-Quin information criterion,HQIC)评估模型拟合效果,表达式分别为
FUEnsan, LIUGuangwei, ZHAOHao,et al.Research on the overall framework and key technologies of intelligent open-pit mines[J].Industry and Mine Automation,2021,47(8):27-32.
LIUWei, GUOZhiqing, HUANGMin,et al.Research on fault prediction method of typical equipment in open-pit mine based on MCMC algorithm[J].Coal Science and Technology,2019,47(10):51-57.
[5]
RAHIMDELM J.Bayesian network approach for reliability analysis of mining trucks[J].Scientific Reports,2024,14(1):3415.
[6]
HEY S, KUSIAKA, OUYANGT H,et al.Data-driven modeling of truck engine exhaust valve failures: a case study[J].Journal of Mechanical Science and Technology,2017,31(6):2747-2757.
[7]
QARAHASANLOUA N, ATAEIM, KHAOLUKAKAIER,et al.Maintainability measure based on operating environment,a case study: Sungun copper mine[J].Journal of Mining and Environment,2018,8(3):511-521.
[8]
TORAMANS.System reliability analysis of large capacity electric mining trucks used in coal mining[J].Journal of Reliability and Statistical Studies,2023:81-98.
[9]
YUANF Q, BARABADIA, LUJ M.Reliability modelling on two-dimensional life data using bivariate Weibull distribution:with case study of truck in mines[J].Eksploatacja i Niezawodnosc-Maintenance and Reliability,2017,19(4):650-659.
[10]
KUMARD, GUPTAS, YADAVP K.Reliability,availability and maintainability (RAM) analysis of a dragline[J].Journal of Mines,Metals and Fuels,2020,68(2):68-77.
[11]
MONIRI-MORADA, SATTARVANDJ.A comparative study between the system reliability evaluation methods: case study of mining dump trucks[J]. Journal of Engineering and Applied Science,2023,70(1):103.
[12]
ASSISE M, BORGESE P, VIEIRA DE MELOS A B.Generalized q-Weibull model and the bathtub curve[J].International Journal of Quality & Reliability Management,2013,30(7):720-736.
[13]
AHMADZ, ALMASPOORZ, KHANF,et al.On predictive modeling using a new flexible Weibull distribution and machine learning approach:analyzing the COVID-19 data[J].Mathematics,2022,10(11):1792.
[14]
PICOLIS, MENDESR S, MALACARNEL C. q-exponential,Weibull,and q-Weibull distributions:an empirical analysis[J].Physica A:Statistical Mechanics and Its Applications,2003,324(3/4):678-688.
FANLitian, WANGHaowen, LINGQingqing,et al.Reliability analysis of medical equipment based on q-Weibull distribution[J].Journal of Mechanical Strength,2023,45(2):392-398.
[17]
MACHADO DE ASSISE, LIMAG A C, PRESTESA,et al. q-Weibull applied to Brazilian hydropower equipment[J].IEEE Transactions on Reliability,2019,68(1):122-132.
[18]
MARCHETTIS, DI MAIOF,ZIO E,et al.Key performance indicators of aging safety barriers in oil and gas facilities[C]//Proceeding of the 33rd European Safety and Reliability Conference.September 3-7,2023.Research Publishing Services,2023:2230-2235.
[19]
TSALLISC.Possible generalization of Boltzmann-Gibbs statistics[J].Journal of Statistical Physics,1988,52(1):479-487.
[20]
ALMONGYH M, ALMETWALLYE M, ALJOHANIH M,et al.A new extended Rayleigh distribution with applications of COVID-19 data[J].Results in Physics,2021,23:104012.
[21]
XUEJ K, SHENB.Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing, 2023,79(7):7305-7336.
[22]
SUNDARAMN, JAYAKODIG.A study on statistical properties of a new class of q-exponential-Weibull distribution with application to real-life failure time data[J].Reliability: Theory and Applications,2023,18(3):582-595.
[23]
TUOYOD O, OPONEF C, EKHOSUEHIN.The Topp-Leone Weibull distribution:its properties and application[J].Earthline Journal of Mathematical Sciences,2021,7(2):381-401.
[24]
AFIFYA Z, MOHAMEDO A.A new three-parameter exponential distribution with variable shapes for the hazard rate:estimation and applications[J].Mathematics,2020,8(1):135.