Aiming at the problem that the transportation and distribution coordination mechanism can not reflect the elasticity of operating reserve demand in the market environment, a transportation and distribution coordination optimal scheduling method based on operating reserve demand curve (ORDC) is proposed. Based on the master-slave game theory, a combined clearing model of electric energy and operating reserve is constructed under the current market environment. According to the clearing result and the statistical data of forecast error, a calculation method of upward or downward regional ORDC considering transmission blockage is proposed to provide a basis for optimization decisions of transmission operators (TSO) and distribution operators (DSO). The TSO computes and issues the regional ORDC, and the DSO makes the optimal scheduling decision according to the regional ORDC. With the aim of maximizing social welfare, the secondary clearance of operating reserve considering demand-side elasticity is carried out, and the results of operating reserve clearance considering both economy and reliability are obtained. The results show that the strategy not only dynamically adjust the clearance results according to the actual uncertainty level of the system, but also reflect the characteristics of the difference of the operating reserve value in different regions. The conclusion can provide theoretical basis for optimizing the operating reserve market clearing mechanism.
随着配电网自动化水平的不断提高以及其内部可灵活调节的资源日益丰富[1],电力系统运行的不确定性显著增加[2-3]。在高比例分布式新能源并网的背景下[4-5],传统配电系统正逐步向新型配电系统转型发展。配电运营商(distribution system operator,DSO)通过协调配电网内多元主体,实现与输电网各主体间的协同运行。如何统筹输配两级运营策略、精准获取需求侧电能与辅助服务的真实需求信息,是应对高比例新能源不确定性的关键举措。
输配电网通过整合各自区域内的灵活性资源并依托输配联络线协同运行,可实现从被动调度向主动协同的运营模式转变[6-7]。在市场机制下,输配协同需通过输电运营商(transmission system operator,TSO)和配电运营商(distribution system operator,DSO)的协同决策实现[8]。文献[9]采用异构分解算法,将问题解耦为TSO和DSO的子问题,并通过边界数据交互迭代直至收敛,有效降低了模型求解复杂度。文献[10]在能量市场中建立TSO-DSO电价协议机制,提出日前-实时两阶段输配协同出清策略。文献[11]计及风电消纳与需求响应,构建日前输配电网运行备用容量协同优化模型,并形成完整的输配电成本分摊机制。文献[12]提出基于主从博弈的输配协同经济调度框架,上层构建输电网价格模型,下层建立配电网经济调度模型,实现电能及上下层运行备用的联合出清。上述研究多从满足电能或辅助服务需求量的维度开展输配协同优化,然而不同需求类型存在本质差异:电能需求因需维持实时功率平衡,各时段具有刚性数量约束;运行备用需求作为系统风险应对手段,其固定数量关系难以体现风险应对价值。作为预想事故及净负荷波动的保障手段[13],运行备用需求在新能源大规模并网背景下,应基于系统不确定性水平动态调整。输配系统的真实备用需求需统筹经济性与可靠性,而非简单维持固定比例关系。传统备用需求计算方法基于负荷/新能源预测值与固定比例系数确定[13]。但随着新能源渗透率提升,该方法存在双重局限:其一,备用需求激增导致其辅助服务价值与稀缺性凸显,传统方法既无法反映市场主体需求特征与弹性特性[14],也难以体现不同区域因不确定性差异产生的风险价值;其二,静态比例系数难以适应动态不确定性环境。
SHIKejian, DAIZikuo, WANGGang,et al.Reactive power optimization for distribution system with distribution generators considering synthetic operation cost[J].Journal of Liaoning Technical University (Natural Science),2023,42(3):339-344.
[3]
MAZIBUKON, AKINDEJIK T, MOLOIK.A review on the impact of transmission line compensation and RES integration on protection schemes[J].Energies,2024,17(14):3433.
BAIXingzhen, ZHAOKang, GELeijiao,et al.Short-term power load forecasting model based on EWT-GRU-RR[J].Journal of Shandong University of Science and Technology (Natural Science), 2023,42(5):77-87.
XIEKangsheng, LIHuaqiang, WANGJunxiang,et al.Overall planning of source-load-storage resources considering coordination in transmission and distribution network[J].Electric Power Construction,2021,42(9):41-52.
TIANNianjie, WANGNing, WANGYonggang,et al.Optimization method for medium and long term dispatch schedule considering schedule execution and new energy consumption[J].Journal of Shenyang University of Technology,2023,45(2):133-138.
LIUDundun, LIULu, CHENGHaozhong,et al.Transmission expansion planning coordinated with distribution networks based on generalized master-slave splitting theory[J].Proceedings of the CSEE,2021,41(17):5856-5866.
[12]
BOYKOE,BYK F, ILYUSHINP,et al.Methods to improve reliability and operational flexibility by integrating hybrid community mini-grids into power systems[J].Energy Reports,2023,9:481-494.
JIANGTao, WUChenghao, LIXue,et al.Clearing mechanism of energy and flexibility markets with transmission and distribution coordination considering charging and discharging of electric vehicles[J].Automation of Electric Power Systems,2024,48(7): 210-224.
JIAOHao, CHENJinming, ZHAOXindong,et al.Multi-objective economic dispatch of transmission-distribution-coupled networks considering global and regional carbon emission obligations[J]. Modern Electric Power,2025,42(2):230-237.
TUQingyu, MIAOShihong, YANGZhihao,et al.A collaborative scheduling strategy for transmission-distribution systems considering peak load-electricity quantity allocation mechanism and key wind power scenarios[J].Proceedings of the CSEE,2024, 44(2):597-610.
LIBenxin, LIUZhen, CHENHouhe,et al.Collaborative economic dispatch of coupled transmission and distribution networks based on the Stackelberg game[J].Power System Protection and Control, 2022,50(18):131-140.
LIUShuo, ZHANGMenghan, XIAQing,et al.Design of spot market mechanism based on demand bidding of reserve ancillary service[J]. Automation of Electric Power Systems,2022,46(22):72-82.
SHIXinhong, ZHENGYaxian, XUEBike,et al.Effect analysis of unit operation constraints on locational marginal price of unit nodes[J]. Power System Technology,2019,43(8):2658-2665.
ZHANGLihui, DAIGuyu, NIEQingyun,et al.Economic dispatch model of virtual power plant considering electricity consumption under a carbon trading mechanism[J].Power System Protection and Control,2020,48(24):154-163.