智能化武器系统中软件保障发展趋势探究
Exploration of the Development Trend of Software Support in Intelligent Weapon Systems
随着智能化武器系统复杂度的指数级增长,软件保障已从传统附属支撑角色演变为决定作战效能的核心要素。通过理论分析与案例研究相结合的方法,系统梳理软件保障的基本概念、国内外发展现状及未来发展趋势。揭示当前技术体系在战场适应性方面存在的瓶颈,提出边缘计算赋能实时保障、数字孪生驱动全生命周期管理、AI自主保障将构成未来技术演进的核心方向。强调软件保障在智能化武器系统中的核心作用,提出未来研究的方向和建议,为推动智能化武器系统的发展提供理论支持和实践指导。
With the exponential increase in complexity of intelligent weapon systems, software support has evolved from a traditional auxiliary support role to a core element that determines combat effectiveness. By combining theoretical analysis with case studies, the basic concepts, domestic and international development status, and future development trends of software support have been systematically sorted out. The bottleneck of the current technology system in battlefield adaptability is revealed. And it is proposed that edge computing enabling real-time support, digital twin driven full life cycle management, and AI independent support will constitute the core direction of future technology evolution. The research conclusion emphasizes the core role of software support in intelligent weapon systems is emphasized and future research directions and suggestions are proposed, providing theoretical support and practical guidance for promoting the development of intelligent weapon systems.
智能化武器系统 / 软件保障 / 装备保障 / 自主保障 / 边缘计算 / 数字孪生
intelligent weapon system / software support / equipment support / independent support / edge computing / digital twin
| [1] |
石纯,张桦,叶飞.面向用户的软件保障性评估指标体系构建[J].系统仿真技术,2019,15(1):41-46. |
| [2] |
石纯,张桦,叶飞.军用软件保障方案编制过程及方法研究[J].系统仿真技术,2019,15(2):142-147. |
| [3] |
|
| [4] |
刘旭同,郭肇强,刘释然, |
| [5] |
|
| [6] |
|
| [7] |
Carnegie Mellon University. SEI team leads first independent study on technical debt in software-intensive DoD systems [EB/OL]. [2025-08-27]. |
| [8] |
毛子泉,高家隆,龚建兴, |
| [9] |
李兴华,于永生,孟真, |
| [10] |
陈辞.外军反无人机运用分析[J].舰船电子工程,2025,45(6):18-21;63. |
| [11] |
|
| [12] |
齐辉.深锻之刃:日本远程打击能力的构建[J].舰船知识,2025(1):66-71. |
| [13] |
王辉雄,洪东跑,刘宸宁, |
| [14] |
崔蕾,迟学谦,张家骏, |
| [15] |
刘泽卿,王辉雄,郑超, |
| [16] |
姜思亮.基于GJB5000B领域分析的软件共性需求开发研究[J].计算机应用文摘,2025(5):179-181. |
| [17] |
李志,胡赫男.生成式人工智能驱动制造业生产力变革的机制与路径:基于广东省的实证分析[J].工业工程,2025,28(2):1-11. |
| [18] |
张大维.数字孪生技术在装备全寿命费用管理领域的应用[J].指挥控制与仿真,2022,44(3):122-127. |
| [19] |
张玉强,孙盛智,张琪.无人机系统关键技术发展综述[J].火力与指挥控制,2025,50(8):1-9. |
| [20] |
曹志鹏,刘勤让,刘冬培, |
| [21] |
关新平,张志军,姜海波, |
| [22] |
孙刚,赵君怡,黄宇峰.民用航空发动机数字孪生技术研究现状与展望[J].中国科学:物理学 力学 天文学,2025,55(5):202-214. |
| [23] |
|
| [24] |
方伟光,聂兆伟,刘宸宁, |
| [25] |
|
| [26] |
喻凡坤,胡超芳,罗晓亮, |
| [27] |
卞嘉楠,冒泽慧,姜斌, |
| [28] |
蒋海刚,朱敏,蒋小强.基于知识图谱和多任务学习的设备故障诊断方法[J].计算机应用,2024,44():72-78. |
| [29] |
叶仕俊,张鹏程,吉顺慧, |
国家自然科学基金项目(52272338)
/
| 〈 |
|
〉 |