Aiming at the problems of slow convergence speed and easy to fall into local optimum in the basic bitterling fish optimization (BFO) algorithm, a bitterling fish optimization based on hybrid strategy (HSBFO) algorithm is proposed. Firstly, the Tent-Logistic-Cosine chaotic mapping is used to initialize the population quality. Secondly, the double-sided mirror reflection theory is introduced to deal with the cross-border individuals and solve the problem of uneven population distribution. Finally, the Gaussian-Cauchy difference strategy is utilized to enhance the algorithm’s ability to escape from local optima. The HSBFO algorithm is compared with particle swarm optimization (PSO) algorithm, whale optimization algorithm (WOA), seagull optimization algorithm (STOA), sine cosine algorithm (SCA) and basic BFO algorithm to optimize nine benchmark test functions. The experimental results show that the HSBFO algorithm has better optimization accuracy than the other four optimization algorithms. The HSBFO algorithm is applied to the cantilever beam design problem, and the experimental results show that the performance of the HSBFO algorithm is better than the basic BFO algorithm in engineering optimization, which verifies the feasibility of the HSBFO algorithm in dealing with practical engineering problems.
苦鱼优化(Bitterling Fish Optimization, BFO)算法[6]是2024年研究人员模拟苦鱼繁殖机制而提出的一种新型智能优化算法。相较于传统优化算法,BFO算法具有原理简单、易于维护、搜索能力相对较强等优势。然而,BFO算法在种群初始化、位置更新策略等方面存在缺陷,导致收敛速度慢和易于陷入局部最优解。针对上述问题,提出一种基于混合策略的苦鱼优化(Bitterling Fish Optimization Based on Hybrid Strategy, HSBFO)算法。首先,采用Tent-Logistic-Cosine混沌映射(Tent-Logistic-Cosine Chaotic Mapping)初始化种群提高其质量;其次,采用双面镜反射理论(Double-Sided Mirror Reflection Theory)处理越界个体,解决种群分布不均匀问题;最后,引入高斯柯西差分策略(Gaussian-Cauchy Differential Strategy)提高算法跳出局部最优解的可能性。仿真实验结果表明,HSBFO算法在全局搜索和局部开发、收敛速度和跳出局部最优解等方面相较于其他智能优化算法均有所提升。
为验证HSBFO算法的寻优性能,对9个基准测试函数进行仿真实验,其中:F1~F4(Zakharov、Rosenbrock、Schaffer_F6、levy)表示单峰测试函数,用于衡量算法寻优效果;F5~F9(Hybrid Function 1、Hybrid Function 2、Composition Function 1、Composition Function 2、Composition Function 3)表示混合函数,具有单个全局最优值和多个局部最优值,用于评估算法的收敛效果。基准测试函数维度为30,范围均为[-100,100]。