龟鳖养殖智能孵化设备研究
Intelligent hatching equipment for farming turtles and soft-shelled turtles
目的 揭示龟鳖胚胎发育阶段与环境参数的生物响应规律,填补水产动物智能化孵化调控策略的理论空白,以期为水产养殖精准环境控制提供可复制的智能化技术路径,推动产业向标准化、生态化方向转型。 方法 基于物联网感知技术、多源信息融合与智能决策技术,构建环境动态感知、胚胎发育智能诊断及养殖装备协同控制于一体的龟鳖工厂化智能养殖系统。该系统通过多参数传感器网络实时采集孵化微环境数据,采用YOLOv5算法,实现胚胎发育阶段智能识别,实现环境参数自适应调节,其核心系统包括环境监测模块、AI智能识别模块和远程监控模块等。 结果 本智能设备的使用可显著提高人工养殖过程的孵化效率与标准化水平。与传统养殖模式相比,智能系统使龟鳖孵化成活率提高了15%,人工成本降低了70%,环境调控精度较人工操作提高3个数量级。 结论 本研究构建了龟鳖胚胎发育特征数据库,建立了温度-湿度-溶氧量多参数耦合调控模型,实现了孵化过程的全要素数字化监控。
Objectives The biological response laws between the embryonic development stage of turtles and soft-shelled turtles and its environmental parameters were investigated and the theoretical gap in the intelligent hatching and regulation strategies for aquatic animals was filled to provide a replicable and intelligent technology paths for precisely controlling environment in aquaculture and promoting the transformation of the standardized and ecological industry. Methods An intelligent system of farming turtles and soft-shelled turtles with integrating environmental dynamic perception, embryonic development diagnosis, and equipment collaborative control was developed based on IoT sensing technology, multi-source information fusion, and intelligent decision-making technologies. The system used a multi-parameter sensor network to collect real-time micro-environmental data during hatching. The YOLOv5 algorithm was used to achieve intelligent recognition of embryonic development stages, enabling adaptive regulation of environmental parameters. Its core system includes an environmental monitoring module, an AI intelligent recognition module, and a remote monitoring module. Results The use of this intelligent system significantly improved the hatching efficiency and standardization level of artificial farming processes. The intelligent systems increased the hatching survival rate of turtles and soft-shelled turtles by 15%, reduced labor costs by 70% compared with traditional farming, and improved environmental regulation accuracy by three orders of magnitude compared to manual operations. Conclusions This article constructed a database of embryonic development characteristics of turtles and soft-shelled turtles, established a multi parameter coupled regulation model integrating temperature, humidity and dissolved oxygen, and achieved full element digital monitoring of the hatching process. It will provide a replicable technical paradigm for intelligent aquaculture.
龟鳖养殖 / 智能设备 / 物联网技术 / 自动控制 / 精准养殖 / 发育识别
farming turtles and soft-shelled turtles / intelligent equipment / IoT technology / automatic control / precision farming / recognizing development
| [1] |
赵春江.智慧农业的发展现状与未来展望[J].华南农业大学学报,2021,42(6):1-7. |
| [2] |
熊学振,杨春,马晓萍.我国畜牧业发展现状与高质量发展策略选择[J].中国农业科技导报,2022,24(3):1-10. |
| [3] |
蔡雪芹,钟小庆,翁如柏,广东省龟鳖养殖及开发利用分析[J].中国渔业经济,2014,32(03):59-62. |
| [4] |
丁向美,董静霆.基于物联网的水产养殖智能检测系统研究[J].物联网技术,2023,13(5):22-24. |
| [5] |
汪晓旵,武尧,肖茂华,水产养殖中识别技术的研究进展[J].华南大学学报,2023,44(1):24-33. |
| [6] |
徐家利.人工智能在水产养殖中研究应用分析与未来展望[J].现代农业研究,2022,28(9):103-105. |
| [7] |
郭清达,于广平,刘杰.基于物联网的水质调控系统在龟鳖养殖中的应用研究[J].科学养鱼,2015(2):75-77. |
| [8] |
洪一民.基于NB-IoT技术的低功耗水污染监测系统的研究[D].合肥:安徽理工大学,2021. |
| [9] |
余开.四种智能渔业设备助力水产养殖向“数字渔业”迈进[J].科学养鱼,2024(7):7-10. |
| [10] |
吴建坤,邓宏强,黄洪锋,山塘水库集约化生态养殖中智能和自动化设备集成应用技术[J].科学养鱼,2024(9):23-25. |
| [11] |
阎天宇.克氏螯虾饲料投喂无人船控制系统研究[D].盐城:盐城工学院,2024. |
| [12] |
许达,曾超贤,周成全,池塘养殖鮰鱼智能分选设备研究[J].浙江农业科学,2023,64(12):2982-2985. |
| [13] |
朱新平,郭捡红,赵伟华.环境因子对龟鳖动物胚胎发育影响的研究进展[J].大连水产学院学报,2008,23(6):471-475. |
| [14] |
赵伟华,朱新平,郭捡红,湿度对黄喉拟水龟胚胎发育与新生幼体特征的影响[J].生态学报, 2009,29(4): 1704-1709. |
/
| 〈 |
|
〉 |