基于FA-ISSA-PPR模型的旋风分离器分离效率预测

汤鸿宇, 仲谦, 邹明

北京化工大学学报(自然科学版) ›› 2024, Vol. 51 ›› Issue (01) : 101 -109.

PDF
北京化工大学学报(自然科学版) ›› 2024, Vol. 51 ›› Issue (01) : 101 -109. DOI: 10.13543/j.bhxbzr.2024.01.012

基于FA-ISSA-PPR模型的旋风分离器分离效率预测

作者信息 +

Author information +
文章历史 +
PDF

摘要

旋风分离器是气田开发中常用的气固分离设备,准确预测旋风分离器的分离效率对于指导其结构设计和方法优化具有重要意义。在对数据集进行相关性分析的基础上,采用因子分析(factor analysis, FA)简化变量,降低预测模型的复杂程度,利用改进的樽海鞘群算法(improved salp swarm algorithm, ISSA)对投影寻踪(projection pursuit regression, PPR)的模型参数进行优化,形成FA-ISSA-PPR组合模型。结果表明,利用FA模型,原数据集的10个变量可以简化合并为4个公因子,分别代表尺寸参数、颗粒沉降特性、粒子运行轨迹和等效分割粒径对分离效率的影响;与半经验模型和其余机器学习模型相比,组合模型在预测精度和训练时间上具有一定的优越性,在测试样本上的平均绝对误差(MAE)为0.005 91,R~2可达0.995,证明了其在小样本、非线性数据分析上的准确性、鲁棒性和泛化性。

关键词

因子分析(FA) / 樽海鞘群算法(SSA) / 投影寻踪(PPR) / 旋风分离器 / 分离效率

Key words

引用本文

引用格式 ▾
汤鸿宇, 仲谦, 邹明. 基于FA-ISSA-PPR模型的旋风分离器分离效率预测[J]. 北京化工大学学报(自然科学版), 2024, 51(01): 101-109 DOI:10.13543/j.bhxbzr.2024.01.012

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

54

访问

0

被引

详细

导航
相关文章

AI思维导图

/