PDF
摘要
针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,并引入交叉系数动态生成多样性初始质心,以降低随机初始化导致的聚类结果波动性;其次,在聚类迭代过程中,结合父代点信息与簇内均值更新规则,通过交叉操作动态调整质心位置,解决了传统算法因局部最优导致的簇间重叠问题;最后,将优化后的聚类结果输入多层感知机,利用其非线性映射能力挖掘潜在特征,实现了聚类结果与深层语义特征的深度融合.实验结果表明,该算法的轮廓系数、 Davies-Bouldin指数和调整Rand指数分别达0.634,1.398,0.621,显著优于其他改进算法,有效提升了算法的聚类准确性、稳定性和可解释性.
关键词
启发式交叉策略
/
K-Means聚类算法
/
多层感知机
/
特征融合
Key words
基于启发式交叉策略优化的K-Means聚类算法[J].
吉林大学学报(理学版), 2025, 63(06): 1663-1672 DOI:10.13413/j.cnki.jdxblxb.2025062