基于NSST域像素相关分析的医学图像融合
Medical image fusion based on pixel correlation analysis in NSST domain
针对像素级多模态医学图像融合信息丢失的问题,提出了一种基于非下采样剪切波变换(NSST)的像素相关性分析(PCAS)的图像融合方法。首先,对源图像进行NSST分解,获得高低频子带。然后,利用提出的中心像素方差计算邻域像素与中心像素的强度相关因子,构建邻域像素相关系数矩阵,并提出将相关性拉普拉斯能量和作为高频方向子带的融合规则。再次,计算低频子带中心像素能量以及邻域像素能量梯度信息,得到低频融合决策图。最后,通过逆变换得到融合结果图像。磁共振图像(MRI)和计算机断层扫描(CT)、单光子发射计算机断层成像(PET)、正电子发射断层成像(SPECT)的脑部图像融合实验结果表明,本文融合方法可以很好地保留源图像的显著信息和纹理细节。
计算机应用 / 图像处理 / 图像融合 / 非下采样剪切波变换 / 像素相关性
computer application / image processing / image fusion / non-subsampled shearlet transform(NSST) / pixel correlation
/
〈 |
|
〉 |