传统的拉普拉斯能量和(Sum of modified laplacian,SML)只计算水平方向和垂直方向的邻域像素信息,忽略了对角邻域像素的灰度相关性。Yin等[10]增加了对角邻域像素信息的计算,但是其权重是根据像素之间的欧式距离计算的,并没有考虑像素之间能量的相关性。为此,本文提出了相关性拉普拉斯能量和(Correlation-sum of modified laplacian,C-SML)的概念:
YangY. Multimodal medical image fusion through a new DWT based technique[C]//2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 2010: 1-4.
[2]
SrivastavaR, PrakashO, KhareA. Local energy-based multimodal medical image fusion in curvelet domain[J]. IET Comput Vision, 2016, 10(6): 513-527.
[3]
KoleyS, GalandeA, KelkarB, et al. Multispectral MRI image fusion for enhanced visualization of meningioma brain tumors and edema using contourlet transform and fuzzy statistics[J]. Journal of Medical and Biological Engineering, 2016, 36(4): 470-484.
[4]
EasleyG, LabateD, LimW Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
GaoYin-han, ChenGuang-qiu, LiuYan-yan. Adaptive image fusion based on image quality assessment parameter in NSST system[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1): 225-234.
[7]
VishwakarmaA, BhuyanM K. Image fusion using adjustable non-subsampled shearlet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(9): 3367-3378.
[8]
ZhuY L, ZhouX Y, LiX W, et al. Algorithm of medical image fusion based on Laplasse pyramid and PCA[C]//IOP Conference Series: Materials Science and Engineering, Shanghai, China, 2019: 490(4): No.042030.
[9]
DeviM S, BalamuruganP. Local energy match based non-sub sampled contourlet Transform for multi modal medical image fusion[J]. International Journal of Engineering and Technology, 2018, 7(2): 165-169.
LiuZhe, XuTao, SongYu-qing, et al. Image fusion technology based on NSCT transform and robust principal component analysis model of similarity information[J]. Journal of Jilin University (Engineering and Technology Edition), 2018,48(5):1614-1620.
[12]
YinMing, LiuXiao-ning, LiuYu, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 49-64.
[13]
KumarB K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204.
[14]
LiuY, ChenX, WardR K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489.
[15]
NenciniF, GarzelliA, BarontiS, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156.
[16]
LiS, KangX, HuJ. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
[17]
LiuYu, LiuShu-ping, WangZeng-fu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.
[18]
ZhuZhi-qin, ZhengMing-yao, QiGuan-qiu, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824.