Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University,Guangzhou 510642,China
RecurDyn中路面由矩形单元构成,每块单元可以记住最大沉陷量、最大压力、剪应变、剪应力以计算正压力或水平摩擦力[25]。对于不同的路面接触参数,计算方式有所不同,为最大程度地模拟试验田块土壤环境,在虚拟样机仿真前进行土壤沉降试验,结合试验田块的土壤特性(土质湿软,含水率为37.3%),在履带的碾压下会发生较大形变,仿真分析中需要考虑土壤的剪切变形,履带与土壤之间的接触通过Soft Ground-Track Link Shoe进行定义,利用Recurdyn构建仿真地面,土壤类型设置为黏重土壤,仿真所需土壤参数包括黏聚力模量kc、内摩擦力模量kφ 、土壤变形指数n。
WangFei, PengShao-bing. Research progress in rice green and high-yield management practices[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136.
XuFu-xian, XiongHong, ZhangLin, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717.
ZengShan, HuangDeng-pan, YangWen-wu, et al. Design and test of the chassis of triangular crawler reclaiming rice harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1943-1950.
LiuWei-jian, LuoXi-wen, ZengShan, et al. Performance test and analysis of the self-adaptive profiling header for ratooning rice based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 1-9.
ZhangGuo-zhong, ZhangYi-xiang, HuangJian-liang, et al. Design and performance testing a novel head spike harvester of ratoon rice[J]. Journal of Huazhong Agriculturall University, 2016, 35(1): 131-136.
FuJian-wei, ZhangGuo-zhong, XieGan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 11-20.
LeiZhi-qiang, ZhangGuo-zhong, PengShao-bing, et al. Simulation and analysis of the stubble pushing rate by chassis of the completely tracked harvester for the ratoon rice[J]. Journal of Anhui Agricultural University, 2017, 44(4): 738-743.
[15]
WongJ Y. Theory of Ground Vehicles[M]. New york: John Wiley & Sons, 1993.
[16]
WongJ Y, ChiangC F. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355.
[17]
WongJ Y, HuangW. "Wheels vs. tracks"-a fundamental evaluation from the traction perspective[J]. Journal of Terramechanics, 2006, 52(43): 27-43.
[18]
RahmanA, YahyaA, ZohadieM. Design parameters optimization simulation of a prototype segmented rubber track vehicle for Sepang peat in Malaysia[J]. American Journal of Applied Sciences, 2005, 2(3): 655-671.
YangCong-bin, DongMing-ming, GuLiang, et al. Research on soil shear strength considering the shape of grouse[J]. Trancsactions of Beijing Institute of Technology, 2015, 35(11): 22-25.
SongZhen-jia. Steering theory of tracked vehicle with uniformpressure distribution on hard land[J]. Armored Force Technologi-cal Institute Education and Scientific Reaserch, 1980, 10(3): 1-10.
ChengJun-wei, GaoLian-hua, WangHong-yan. Analysis on the steering of tracked vehicles[J]. Acta Armamentarii, 2007, 10(9): 1110-1115.
[25]
Laura E Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics and Automation, 2009, 25(3): 717-726.
[26]
PentzerJ, BrennanS N, ReichardK M. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476.
[27]
MartínezJ L, MandowA, MoralesJ, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878.
[28]
LyaskoModest. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1): 21-31.
YangCai, SongJian, ZhouYan-xia. Algorithm for front wheel slip ratio in the traction control system when turning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2008, 39(8): 38-40.
[33]
BekkerM G. Introduction to Terrain-vehicle Systems[M]. Michigan: The University of Michigan Press, 1969.
[34]
KarafiathL L, NowatzkiE A. Soil Mechanics for Off-road Vehicle Engineering[M]. Clausthal: Transportation Technology Publications, 1978.
DuXiao-qiang, NingChen, YangZhen-hua, et al. Design and experiment of hydraulic system for crawler chassis of straddle type camellia oleifera fruit harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 139-147.
SongPeng, LvJin-qing. Effects of coupling simulation of self-excited vibratory subsoiler based on EDEM-RecurDyn[J]. Journal of Northeast Agricultural University, 2023, 54(2): 87-94.
LiuHan-guang, WangGuo-qiang, MengDong-ge, et al. Reasonable pre-tension reaserch of crawler traveling gear of hydraulic excavator[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 486-491.