仿生扑翼微型飞行器(Flapping-wing micro air vehicle,FWMAV)作为特种无人飞行器,鉴于其仿生性能优势,在民用领域及军用领域均存在广泛应用前景,并成为近年来飞行器领域的研究热点[1-3]。路径规划作为飞行器自主功能的一项关键技术,对FWMAV实施自主飞行决策和智能导航具有至关重要的作用。
目前,路径规划方法大致分为3个方向:基于图形的算法、启发式搜索算法和现代智能算法[4,5]。基于图形的算法以概率路线图(Probabilistic roadmap,PRM)法为代表,根据算法的路径搜索方法,随机搜索环境空间中下一步可能的路径[6]。启发式搜索算法以A*算法为典型代表,以从初始位置到终点位置间的最小代价为目标,搜索解空间内的最优路径[7]。现代智能算法大部分属于进化式搜索算法[8-12],包括:遗传算法、蚁群优化算法、人工神经网络、即时定位与地图构建(Simultaneous localization and mapping,SLAM)等,通过迭代搜索寻找最优路径,其简单、高效且收敛速度快。当前的路径规划算法较为普遍地应用于静态避障,在处理动态避障时,会因效率低而出现实时性问题。因此,现有路径规划算法常用于速度较慢的地面移动机器人、四旋翼飞行器等静态路径规划和避障中。
PhanH V, AurecianusS, AuT K L, et al. Towards long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5059-5066.
[2]
ZhiP, XuY, ChenB. Time-dependent reliability analysis of the motor hanger for EMU based on stochastic process[J]. International Journal of Structural Integrity, 2020, 11(3): 453-469.
[3]
LiY H, ShengZ, ZhiP, et al. Multi-objective optimization design of anti-rolling torsion bar based on modified NSGA-III algorithm[J]. International Journal of Structural Integrity, 2021, 12(1): 17-30.
HuoFeng-cai, ChiJin, HuangZi-jian, et al. Review of path planning for mobile robots[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 36(6): 639-647.
[6]
TriharmintoH H, PrabuwonoA S, AdjiT B, et al. UAV dynamic path planning for intercepting of a moving target: a review[J]. Communications in Computer & Information Science, 2013, 376: 206-219.
Chengqian, Gaosong, Caokai, et al. Path planning of mobile robot based on PRM optimization algorithm[J]. Computer Applications and Software, 2020, 37(12): 254-259.
[9]
KongX D, PanB, CherkashinE, et al. Multi-constraint UAV fast path planning based on improved A* algorithm[J]. Journal of Physics: Conference Series, 2020, 1624(4): No.042009.
LinHan-xi, XiangDan, OuyangJian, et al. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications, 2021, 57(18): 38-48.
DaiJian, XuFei, ChenQi-feng. Multi-UAV cooperative search on region division and path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup.1): 149-156.
WangWei, LiangQiao. Research of ego-positioning for micro air vehicles based on monocular vision and inertial measurement[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 34(6): 774-780.
WangXiao-dong, ZhangYong-qiang, XueHong. Improved ant colony algorithm for VRP[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 35(2): 198-203.
[20]
HoH W, WagterC D, RemesB D W, et al. Optical-flow based self-supervised learning of obstacle appearance applied to MAV landing[J]. Robotics and Autonomous Systems, 2018, 100: 78-94.
[21]
TijmonsS, CroonD G C H E, RemesB D W, et al. Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV[J]. IEEE Transactions on Robotics, 2017, 33(4): 858-874.
[22]
TuZ, FeiF, ZhangJ, et al. Acting is seeing: navigating tight space using flapping wings[C]//2019 International Conference on Robotics and Automation, Montreal, Canada, 2019: 95-101.
[23]
余立均. 仿生扑翼微型飞行器路径规划研究[D]. 成都: 电子科技大学航空学院, 2021.
[24]
YuLi-jun. Study on path planning of bio-inspired flapping-wing micro aerial vehicles[D]. Chengdu: College of Aeronautics, University of Electronic Science and Technology of China, 2021.