CherkasovI I, ShvarevV V. Soviet investigations of the mechanics of lunar soils[J]. Soil Mechanics and Foundation Engineering, 1973, 10(4): 252-256.
[2]
LeonovichA K, GromonV V, RybakovA V, et al. Studies for lunar ground mechanical properties with the self-propelled lunokhod-l[R]. Moscow: Peredvizhnaya Laboratoriya na Luna-Lunokhod-1, 1971: 120-135.
[3]
LeonovichA K, GromovV V, RybakovA V, et al. Investigations of the mechanical properties of the lunar soil along the path of Lunokhod-1[R]. Berlin: COSPAR space research Ⅻ, 1972: 53-54.
[4]
ZacnyK, WilsonJ, CraftJ, et al. Robotic Lunar Geotechnical Tool[M]. Honolulu: Earth and Space, 2010.
HanHong-shuo, ChenJie. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
CuiPing-yuan, XuRui, ZhuSheng-ying, et al. State of the art and developement trends of on-board autonomy technology for deep space explore[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28.
XieYang-min, JiLi, WeiXiang-quan, et al. Domestic and overseas research status on autonomous navigation technology of planetary rovers[J]. Aerospace Shanghai, 2021, 38(1): 61-71.
[11]
TeamR. Characterization of the martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278(5344): 1765-1768.
[12]
MooreH J, BicklerD B, CrispJ A, et al. Soil-like deposits observed by Sojourner, the pathfinder rover[J]. Journal of Geophysical Research Planets, 1999, 104(E4): 8729-8746.
[13]
SullivanR, AndersonR, BiesiadeckiJ, et al. Cohesions, friction angles, and other physical properties of martian regolith from mars exploration rover wheel trenches and wheel scuffs[J/OL]. [2021-11-02].
[14]
ArvidsonR E, AndersonR C, BartlettP, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685): 821-824.
[15]
ArvidsonR E, BonitzR G, RobinsonM L, et al. Results from the mars phoenix lander robotic arm experiment[J/OL]. [2021-11-03].
[16]
OnoM, FuchsT J, SteffyA, et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning[C]//2015 IEEE Aerospace Conference, Monoana, USA, 2015: 1-10.
[17]
HuangG. Visual-inertial navigation: a concise review[C]//2019 International Conference on Robotics and Automation (ICRA), Monertal, Canada, 2019: 9572-9582.
[18]
IagnemmaK, KangS, BrooksC, et al. Multi-sensor terrain estimation for planetary rovers[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, NARA, Japan, 2003: No.12273618.
[19]
ReinaG, OjedaL, MilellaA, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 185-195.
[20]
CrossM, ElleryA, QadiA. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics, 2013, 50(3): 165-174.
LiMeng, GaoFeng, SunPeng, et al. Mechanical parameters reverse estimation of lunar soil and experimental verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1081-1805.
XueLong, ZouMeng, LiJian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3751-3758.
[27]
DingL, GaoH, DengZ, et al. Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, ST.Louis, USA, 2009: 3343-3348.
DingLiang, GaoHai-bo, DengZong-quan, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering, 2009, 45(7): 49-55.
LINan, GaoHai-bo, LvFeng-tian, et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics, 2016, 37(11): 1356-1364.
HuangHan, XuShu-cai, ZhangJin-huan, et al. Non-parametric identification method for lunar regolith based on rut non-contact measurement[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 366-374.
HuangHan, LiJian-qiao, ChenBai-chao, et al. Traction trafficability of wire mesh wheel based on terramechanics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 464-470.
ChenBai-chao, ZouMeng, DangZhao-long, et al. Experiment on preasure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
LiJian-qiao, HuangHan, DangZhao-long, et al. Sinkage of wire mesh wheel under light load[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(1):167-173.
[41]
黄晗. 深空探测车辆筛网轮牵引通过性研究[D]. 长春: 吉林大学生物与农业工程学院, 2017.
[42]
HuangHan. Study on traction trafficability for wire mesh wheel of planetary exploration rovers[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2017.
[43]
BekkerM G. Theory of Land Locomotion[M]. Ann Arbor: University of Michigan Press, 1956.