因此,本文首先单因素试验研究了喷射参数对柴油机瞬变加载工况微粒数量及质量浓度排放的影响,然后借助田口设计方法,通过正交试验得到以特定微粒数量和质量浓度为输出指标的最优控制参数组合,并最终确定各控制参数对输出指标的影响权重。本研究有助于从柴油机喷射参数控制方面为柴油机瞬态过程微粒排放的优化控制提供参考,同时,因本文所使用的电子控制单元(Electronic control unit,ECU)关闭了瞬变过程中对喷油参数的修正,因此本研究也为喷射参数在瞬变加载工况中的map修正提供了数据及理论基础。
NilssonT, FrobergA, AslundJ. Optimal operation of a turbocharged diesel engine during transients[J] SAE International Journal of Engines, 2012,5(2): 571-578.
[2]
隋菱歌. 增压柴油机瞬态工况性能仿真及优化[D].长春:吉林大学汽车工程学院,2012.
[3]
SuiLing-ge. Simulation and optimization of turbo charged diesel engine performance under transient operations[D]. Changchun; College of Automotive Engineering, Jilin University, 2012.
[4]
RakopoulosC D, MichosC N, GiakoumisE G. Study of the transient behavior of turbocharged diesel engines including compressor surging using a linearized quasi-steady analysis[C]//SAE Paper, 2005-01-0225.
[5]
RakopoulosC D, GiakoumisEG, RakopoulosD C. The effect of friction modelling on the prediction of turbocharged diesel engine transient operation[C]//SAE Paper, 2004-01-0925.
[6]
GrahnM, JohanssonK, McKelveyT. Model-based diesel engine management system optimization for transient engine operation[J]. Control Engineering Practice, 2014, 29: 103-114.
[7]
AtkinsonC, AllainM, ZhangH. Using model-based rapid transient calibration to reduce fuel consumption and emissions in diesel engines[C]//SAE Paper, 2008-01-1365.
[8]
AtkinsonC, MottG. Dynamic model-based calibration optimization: an introduction and application to diesel engines[C]//SAE Paper, 2005-01-0026, 2005.
[9]
LiuS, CuiY, WangY, et al. An evaluation method for transient response performance of turbocharged diesel engines[J]. Energy, 2019, 182:852-863.
FuJian-qin. Continuous detecting on the operating and performance parameters of automotive engine under transient conditions and study of the heat-work conversion process[D]. Changsha; College of Mechanical and Vehicle Engineering, Hunan University, 2014.
ZhangLong-ping. Investigation of performance deterioration and control strategy of automotive diesel engine under transient operation conditions[D]. Changchun: College of Automotive Engineering, Jilin University, 2015.
[14]
刘长铖. 车用增压柴油机瞬变过程能量流及㶲流分析[D]. 长春:吉林大学汽车工程学院, 2020.
[15]
LiuChang-cheng. Analysis of energy flow, exergy flow and optimization of energy efficiency in an automotive turbocharged diesel engine[D]. Changchun; College of Automotive Engineering, Jilin University, 2020.
[16]
TanPi-qiang, RuanShuai-shuai, HuZhi-yuan, et al. Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions[J]. Applied Energy, 2014, 113: 22-31.
TanPi-qiang, HuZhi-yuan, LouDi-ming. Quantity of exhaust particles in vehicle diesel engine under transient conditions[J]. Chinese Journal of Mechanical Engineering, 2012, 48(14): 134-140.
[19]
SunWan-chen, WangQiao, GuoLiang, et al. Influence of biodiesel/diesel blends on particle size distribution of CI engine under steady/transient conditions[J]. Fuel, 2019, 245: 336-344.
[20]
ZhangX B, WangZ X, XiaoB, et al. A neural network learning-based global optimization approach for aero-engine transient control schedule[J]. Neurocomputing, 2021, 469: 180-188.
[21]
ZhangMiao-miao, HongWei, XieFang-xi, et al. Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method[J]. Energy Conversion and Management, 2018, 164: 344-352.
[22]
UsluS, YamanH, YesilyurtM K. Optimization of parameters affecting the performance and emissions of a spark ignition engine fueled with n-pentanol/gasoline blends using taguchi method[J]. Arabian Journal for Science and Engineering, 2021, 46(12): 11711-11724.