图2中, xi (i=1,2,…,8)为帆板子模块振动的位移向量。本文忽略帆板在xoy平面的扭转,只考虑帆板在z轴方向上的振动。作动器安装在帆板上,根据控制需要输出控制力作用于帆板,使帆板实现主动振动抑制。作动器以两列的形式沿帆板坐标系的x轴方向排列,作动器采用压电陶瓷作动器,安装在大挠性太阳能帆板的表面。为避免运用压电元件时产生的控制溢出现象[15],传感器与作动器对位安装。帆板根据作动器的位置进行子模块划分。
NadafiR, KabganianM, KamaliA, et al. Super-twisting sliding mode control design based on Lyapunov criteria for attitude tracking control and vibration suppression of a flexible spacecraft[J]. Measurement and Control, 2019, 52(7/8): 814-831.
[2]
LiuFeng, YueBao-zeng, ZhaoLiang-yu. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels[J]. Acta Astronautica, 2018, 143: 327-336.
[3]
YuanQ, LiuY, QiN. Active vibration suppression for maneuvering spacecraft with high flexible appendages[J]. Acta Astronautica, 2017, 139: 512-520.
[4]
LuoY J, XuM L, YanB, et al. PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator[J]. Journal of Sound & Vibration, 2015, 339: 11-24.
[5]
WangZ, XuM, JiaY, et al. Vibration suppression-based attitude control for flexible spacecraft[J]. Aerospace Science & Technology, 2017, 70: 487-496.
[6]
RahmanN U, AlamM N, AnsariJ A. An experimental study on dynamic analysis and active vibration control of smart laminated plates[J]. Materials Today: Proceedings, 2021, 46: 9550-9554.
[7]
TianJ, GuoQ, ShiG. Laminated piezoelectric beam element for dynamic analysis of piezolaminated smart beams and GA-based LQR active vibration control[J]. Composite Structures, 2020, 252: No.112480.
[8]
HuQ, MaG, LiC. Active vibration control of a flexible plate structure using LMI-based H∞ output feedback control law[C]//Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 2004: No.8369247.
MiaoShuang-quan, CongBing-long, LiuXiang-dong. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(8): 1906-1914.
[11]
WangE, WuS, LiuY, et al. Distributed vibration control of a large solar power satellite[J]. Astrodynamics, 2019, 3(2): 189-203.
[12]
JiN, LiuJ. Distributed vibration control for flexible spacecraft with distributed disturbance and actuator fault[J]. Journal of Sound and Vibration, 2020, 475: No.5274.
[13]
LiQ, YangH, ZhaoD, et al. Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2014-2023.
[14]
NakkaY, ChungS J, AllisonJ, et al. Nonlinear attitude control of a spacecraft with distributed actuation of solar arrays[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3): 458-475.
[15]
ChenT, ShanJ, WenH. Distributed passivity-based control for multiple flexible spacecraft with attitude-only measurements[J]. Aerospace Science and Technology, 2019, 94: No.105408.
[16]
韩泽强. 大挠性卫星高精度控制关键技术研究[D]. 哈尔滨:哈尔滨工业大学航天学院,2020.
[17]
HanZe-qiang. Research on key technologies of high-precision satellite high-precision control[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2020.
[18]
MuhammadA K, WangX G, CuiN G, et al. A criterion for optimal sensor placement for minimizing spillover effects on optimal controllers[J]. Journal of Vibration and Control, 2018, 24(8): 1469-1487.
LiuXiao-xiang, ShiHeng, WangSi-ye. An analysis on characteristics and impacts of close modes in flexible space structures[J]. Aerospace Control and Application, 2017, 43(1): 11-16.
[21]
ÅströmK J, MurrayR M. Feedback Systems: An Introduction for Scientists and Engineers[M]. Princeton: Princeton University Press, 2010.
[22]
HeW, GeS Z S. Dynamic modeling and vibration control of a flexible satellite[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(2): 1422-1431.