ArsalanM, NaqviR A, KimD S, et al. IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors[J]. Sensors, 2018, 18(5): No.1501.
[2]
HuoGuang, LinDa-wei, YuanMeng, et al. Heterogeneous iris segmentation method based on modified U-Net[J]. Journal of Electronic Imaging, 2021, 30(6): No.063015.
[3]
UmerS, DharaB C. A fast iris localization using inversion transform and restricted circular hough transform[C]//Proceedings of the 2015 8th International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6.
[4]
BendaleA, NigamA, PrakashS, et al. Iris segmentation using improved hough transform[C]//Proceedings of the 8th International Conference on Intelligent Computing, Huangshan, China, 2012: 408-415.
[5]
RoyD A, SoniU S. IRIS segmentation using Daughman's method[C]//Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 2016: 2668-2676.
ZhouRui-ye, ShenWen-zhong. PI-Unet: research on precise iris segmentation neural network model for heterogeneous iris[J]. Computer Engineering and Applications, 2021, 57(15): 223-229.
[8]
ShelhamerE, LongJ, DarrellT. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[9]
RonnebergerO, FischerP, BroxT. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241.
[10]
ChaurasiaA, CulurcielloE. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]//Proceedings of the 2017 IEEE Visual Communications and Image Processing, Petersburg, USA, 2017: 1-4
[11]
ChenYing, WangWen-yuan, ZengZhuang, et al. An adaptive CNNs technology for robust iris segmentation[J]. IEEE Access, 2019, 7: 64517-64532.
[12]
WangCai-yong, WangYun-long, XuBo-qiang, et al. A lightweight multi-label segmentation network for mobile iris biometrics[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1006-1010.
[13]
ZhongZ L, LinZ, BidartR, et al. Squeeze-and-attention networks for semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13062-13071.
KumarA, PassiA. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026.
[16]
ProenaH, FilipeS, SantosR, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535.
[17]
MilletariF, NavabN, AhmadiS A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565-571.
[18]
RathgebC. Iris Biometrics from Segmentation to Template Security[M]. Iris Biometrics: From Segmentation to Template Security, 2012.
[19]
WildP, HofbauerH, FerrymanJ, et al. Segmentation-level fusion for iris recognition[C]//Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 2015: 1-6.
[20]
UhlA, WildP. Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation[C]//Proceedings of the 2012 5th IAPR International Conference on Biometrics, New Delhi, India, 2012: 283-290.
[21]
A biometric reference system for iris, ersionosiris V4.1[EB/OL]. [2022-01-06].
[22]
UhlA, WildP. Multi-stage visible wavelength and near infrared iris segmentation framework[C]//Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 2012: 1-10.
[23]
AhmadS, FullerB. Unconstrained iris segmentation using convolutional neural networks[C]//Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2018: 450-466.
[24]
AlonsofernJ O. Iris boundaries segmentation using the generalized structure tensor—a study on the effects of image degradation[C]//Proceedings of the 2012 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, USA, 2012: 426-431.
[25]
EhsaneddinJ, AndreasU. Iris segmentation using fully convolutional encoder-decoder Networks[C]//Proceedings of the Computer Vision and Pattern Recognition, New York, USA, 2017: 133-155.
YouXuan-ang, ZhaoPeng, MuXiao-dong, et al. Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 109-120.
[28]
LozejJ, MedenB, StrucV, et al. End-to-end iris segmentation using U-Net[C]//Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence,San Carlos, Costa Rica, 2018: 1-6.
[29]
ZhangWei, LuXiao-qi, GuYu, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089.
[30]
WangQi, MengXiang-yue, SunTing, et al. A light iris segmentation network[J]. The Visual Computer, 2021, 38: 2591-2601.
[31]
HeKai-ming, ZhangXiang-yu, RenShao-qiang, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.