PDF
摘要
针对现有皮肤病变图像分割时缺乏多尺度特征提取,从而导致细节信息缺失和病变区域误分割的问题,本文提出一种融合多尺度Transformer的编解码网络皮肤病变分割算法。首先运用Transformer模块构建分层编码器,分层编码器从全局特征变化角度出发,多尺度分析皮肤病变区域;然后利用多尺度融合模块、通道注意力模块和联合层构建融合解码器,多尺度融合模块互补分层编码器中浅层网络信息与深层网络信息,增强空间信息和语义信息间的依赖关系,通道注意力模块能够有效识别特征丰富的通道,提高算法分割精度;最后引入扩展模块恢复图像大小以匹配实际需求。将该算法在ISBI2016、ISBI2017和ISIC2018三个公共数据集上进行实验测试,其像素精度分别为96.70%、94.50%和95.39%,平均交并比分别为91.69%、85.74%和89.29%,算法测试整体性能优于现有算法。仿真实验证明,多尺度Transformer编解码网络能够有效地分割皮肤病变图像。
关键词
计算机应用技术
/
皮肤病变
/
图像分割
/
Transformer
/
多尺度融合模块
/
通道注意力模块
Key words
梁礼明, 周珑颂, 尹江, 盛校棋
融合多尺度Transformer的皮肤病变分割算法[J].
吉林大学学报(工学版), 2024, 54(04): 1086-1098 DOI:10.13229/j.cnki.jdxbgxb.20220692