In order to improve the fault management system of complex system, a fault diagnosis strategy based on interpretive structural modeling (ISM) is proposed. According to the fault mechanism analysis, the fault correlation matrix of system elements is established, and the interpretive structural model is applied to transform the complex system fault correlation relationship into an intuitive hierarchical model through matrix transformation, so as to realize the structure and hierarchical system fault propagation; The PageRank algorithm is introduced to evaluate the impact and influence of system element failures; The main cause of fault transmission is clarified through the magnitude of the impact related to component failure and the fault transmission logic, so as to provide a basis for fault diagnosis. Finally, a device is used as an example to verify the effectiveness of the method.
定义n维向量 P =(PR(1),PR(2),…PR(n))T, 表示第(x+1)次迭代所得到的各节点的重要度所组成的(n×1)阶矩阵,则值为:
式中:为阻尼因子,取值在0和1之间,表示节点间传递概率;为(n×1)阶矩阵,并且元素全为1。
设为迭代收敛平稳阀值,本文取10-8,各节点的初始值为P1,当满足时,迭代结束。
公式(2)展开可得:
若存在节点到节点的链接,那么,, 否则,。
1.3.2 故障相关影响度评估
根据PageRank原理,通过对转移矩阵的迭代最终可以得到各节点的转移概率,对邻接矩阵变换得到转移概率矩阵的转置矩阵,矩阵中同列元素(即)表示节点i对节点j的影响,由此得出各节点对节点j的影响度,即节点j的被影响度( CK )。将邻接矩阵转置变换得到概率矩阵,其元素表示节点i对各节点的影响,即节点的影响度(),节点故障被影响度、影响度与节点的入度、出度正相关。
设系统由n个组件组成,定义一个n维向量, CKx+1 表示第(x+1)次迭代所得的各系统组件的 CK 值组成的(n×1)阶矩阵。
(2)依据被影响度 CK 确定某层次各系统要素受上一层次系统要素故障影响的大小;对于同层次间的系统要素,根据影响度 CI 值确定相邻层次间故障影响的大小。
(3)故障是从根故障层经中间故障层传递到表象层的。故障诊断一般从表现层开始,经中间层逐级定位根故障要素。对表象层的某要素,可依据其被影响度大小确定其重要性;对故障源级组件依据其影响度大小确定其重要性;对同层中间层组件,分析其作为原因组件的重要性时,依据其影响度大小确定其重要性,当其相等时,依据其被影响度识别。比较 CK 值与 CI 值的大小,判断故障源,识别故障传递关键路径。
ZhangHai-rui, HongDong-pao, ZhaoYu, et al. Synthetic reliability assessment for complex system based on dynamic population statistics[J]. Systems Engineering and Electronics, 2015,37(5): 1213-1218.
ZhouDong-hua, ShiJian-tao, HeXiao. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2): 161-171.
[7]
BhattacharyyaS, KumarR, HuangZ. A discrete event systems approach to network fault management: detection and diagnosis of faults[J]. Asian Journal of Control, 2011, 13(4): 471-479.
ShengBo, DengChao, XiongYao, et al. Fault diagnosis for CNC machine tool based on graph theory[J]. Computer Integrated Manufacturing Systems, 2015, 21(6): 1559-1570.
[10]
LiuH M, LiuD W, LuC, et al. Fault diagnosis of hydraulic servo system using the unscented kalman filter[J]. Asian Journal of Control, 2014, 16(6): 1713-1725.
HanGuang-chen, SunShu-dong, SiShu-bin. Research on complex system modeling technology based on graph theory[J]. Mechanical Science and Technology, 2005, 24(9): 1118-1121.
LiuPeng-peng, ZuoHong-fu, SuYan, et al. Review of research on fault diagnosis based on graph theory[J]. China Mechanical Engineering, 2013, 24(5): 696-703.
[15]
YokabedB, MohammadJ, MahdiK, et al. The application of ISM model in evaluating agile suppliers selection criteria and ranking suppliers using fuzzy topsis-ahp methods[J]. Expert Systems with Applications, 2015, 42(15/16): 6224-6236.
WangShou-xiang, ZhangYi-fan, GeLei-jiao. Interpretative structural model of influencing factors for distribution network of new-type town[J]. Electric Power Automation Equipment, 2015, 35(11): 75-81.
[18]
SunS G, ShenG X, ZhangY Z, et al. Failure analysis of machining center based on ISM and FMECA[J]. Journal of Hunan University (Natural Sciences), 2015, 42(8): 47-52.
[19]
杨科. 基于高阶统计的非线性故障诊断方法的研究[D]. 北京: 北京化工大学信息学院, 2014.
[20]
YangKe. Nonlinear fault diagnosis method based on high-order statistics[D]. Beijing: Faculty of Information, Beijing University of Chemical Technology, 2014.
[21]
OuL, ChenY, ZhangJ, et al. Dematel-ISM-based study of the impact of safety factors on urban rail tunnel construction projects[J]. Computational Intelligence and Neuroscience, 2022, 2022: 1-12.
ZhangYing-zhi, WuMao-kun, ShenGui-xiang, et al. An analysis of failure correlation of assemble machine tool based on DEMATEL/ISM[J]. Industrial Engineering Journal, 2014, 17(3): 92-96.
LiuJin-ping, WangJie, LiuXian-feng, et al. Online fault monitoring and diagnosis using recursive sparse principal component analysis[J]. Control and Decision, 2020, 35(8): 2006-2012.
ZhuDa-rui, WangRui, ChengWen-ji, et al. Critical transmission node identification method based on improved PageRank algorithm[J]. Power System Protection and Control, 2022, 50(5): 86-93.
FanHua. Research on node centrality measurement based on PageRank in multi-dimensional networks[D]. Shenyang: School of Information Science and Technology, Liaoning University, 2020.
YingYi, HuangHui, LiuDing-yi. Research on hotspot detection hybrid algorithm based on PageRank[J]. Computer Technology And Development, 2019, 29(9): 81-85.
[32]
GleichD F. PageRank beyond the web[J]. SIAM Review, 2015, 57(3): 321-363.
[33]
SungchanP, WonseokL, ByeongseoC, et al. A survey on personalized PageRank computation algorithms[J]. IEEE Access, 2019, 7: 163049-163062.
[34]
KohlschütterC, ChiritaP, NejdlW. Efficient parallel computation of PageRank[J]. Lecture Notes in Computer Science, 2006, 3936(1): 241-252.
[35]
ZhangY Z, MuL M, Shen, G X, et al. Fault diagnosis strategy of CNC machine tools based on cascading failure[J]. Journal of Intelligent Manufacturing, 2019, 30(5): 2193-2202.