Aiming at the different target requirements of each user in the Underlay cognitive radio network, a power allocation scheme that flexibly adjusts the target according to its actual needs is proposed. A dual-objective adjustment factor is proposed to configure the performance indicators of user power consumption and quality of service (QoS), and a performance selection objective function is constructed to effectively solve the problem of only considering unilateral performance improvement under the traditional power allocation algorithm. In order to verify the effectiveness of the scheme, the user power and signal to noise ratio under different adjustment factors are simulated and analyzed. Experiments show that by adjusting the target factor, low power consumption and high quality of service can be selected to meet the different needs of users in the same scenario.
部分学者意识到了高能耗问题,但大多数以降低服务质量(Quality of service,QoS)的方式换取能耗的降低。文献[8]以降低总传输功率为目的,设计了一种加权的鲁棒分布式功率分配方案,以保证系统的公平性;文献[9,10]考虑了信道的不确定性,研究在PU干扰功率和服务质量约束下最小化SU发射总功率的鲁棒功率控制算法;文献[11]提出了基于遗传思想的粒子群优化算法,有效降低发射功率并提高SINR。这些算法仅保证了认知用户正常通信所需的QoS,而无法对其进行灵活的调整。
当所有用户均希望取得好的服务质量时,此时PS算法的目标函数则为,在此目标函数下,系统会最大限度地提高功耗以提高用户的服务质量,与传统最大化容量(Traditional maximum capacity,TMC)算法的性能进行对比分析。图2所得到的是各个认知用户的发射功率,将两种不同算法下的功率逐一对比发现,PS算法下各个认知用户的功率值曲线均未超过其本身的功率限制,并且所得功率值均小于TMC算法,而TMC算法下的用户3并没有遵循所设功率限制,可见PS算法在功耗上的性能相较TMC算法而言更加优越。
ChenWei-long, LiangJun, XiaoNan, et al. A robust power control algorithm with priority of energy efficiency[J]. Journal of Xi'an Jiaotong University, 2021, 55(2): 143-149.
[6]
SunM, JinM, GuoQ, et al. Throughput maximization for cognitive radio with wirelessly powered primary users[J]. IEEE Systems Journal, 2019, 14(2): 2432-2442.
MaBei, ZhangHai-lin, ZhangZhao-wei, et al. Imperfect channel state information based D2D power allocation algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4):1320-1324.
[9]
WangJ, ChenJ, YouL, et al. Robust power control under location and channel uncertainty in cognitive radio networks[J]. IEEE Wireless Communications Letters, 2017, 4(2): 113-116.
[10]
ThanujaT C, DamanK A, PatilA S. Optimized spectrum sensing techniques for enhanced throughput in cognitive radio network[C]∥ International Conference on Emerging Smart Computing and Informatics, Pune, India, 2020: 137-141.
[11]
WangH, ZhuM, ZhouM. A robust power allocation scheme in ad-hoc cognitive radio networks[J]. International Journal of Online Engineering, 2017, 13(8): 45-59.
[12]
XuY, ChenQ, HuangX. Robust power control for OFDM-based cognitive radio networks with QOS guarantee[J]. Wireless Personal Communications, 2017, 96(2): 2125-2140.
[13]
ZhuL, ZhaoX H. Robust power allocation for OFDM based underlay cognitive radio networks with channel uncertainties[J]. Wireless Personal Communications, 2017, 94(4): 3531-3547.
WangHong-zhi, JiangFang-da, ZhouMing-yue. Power allocation of cognitive radio system based on genetic particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1363-1368.
[16]
YousefvandM, AnsariN, KhorsandiS. Maximizing network capacity of cognitive radio networks by capacity-aware spectrum allocation[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5058-5067.
[17]
PanC, WangJ, ZhangW, et al. Power minimization in multi-band multi-antenna cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 5056-5069.
[18]
TsiropoulosG I, DobreO A, AhmedM H, et al. Joint channel assignment and power allocation in cognitive radio networks[C]∥ IEEE Global Communications Conference, Austin, USA, 2014: 876-881.
[19]
WaqasM, AslamS, AliZ, et al. Resource optimization for cognitive radio based device to device communication under an energy harvesting scenario[J]. IEEE Access, 2020, 8(1): 24862-24872.
[20]
WangH, YanY, ZhouM. Resource allocation in OFDM-based cognitive radios under proportional rate constraint[C]∥ Communications and Networking: 12th International Conference, Xi´an, China, 2017: 416-425.
ZhuMeng, WangHong-zhi, ZhouMing-yue, et al. Robust power allocation algorithm for cognitive radio systems[J]. Journal of Changchun University of Technology (Natural Science Edition), 2017, 38(1): 43-47.