基于改进鸽群优化算法的燃料电池汽车模糊能量管理策略
肖纯 , 易子淳 , 周炳寅 , 张少睿
吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (06) : 1873 -1882.
基于改进鸽群优化算法的燃料电池汽车模糊能量管理策略
Fuzzy energy management strategy of fuel cell electric vehicle based on improved pigeon⁃inspired optimization
以提高辅助能量源动力电池的寿命为目标提出复合模糊能量管理策略,采用改进鸽群优化算法(IPIO)更新模糊隶属度函数,同时确保动力电池长时间工作在适宜区间并降低等效氢耗量。对现有ADVISOR模型进行二次开发建立FCEV混合动力系统的仿真模型,并在NEDC、CLTC-P两种工况下进行仿真实验。结果表明:本文提出的复合模糊能量管理策略在初始SoC较低的情况下充电速度是功率跟随策略的2倍以上,能更快达到适宜的SoC区间,可以延长动力电池寿命;在初始SoC较高的情况下,本文提出的复合模糊能量管理策略等效氢耗量相比改进前在两种工况下分别降低了11.8%和9.09%,显著降低了氢耗量,提高了氢燃料电池汽车的经济性。
A composite fuzzy energy management strategy was proposed with the goal of improving the lifespan of auxiliary energy source power batteries. The improved pigeon swarm optimization algorithm (IPIO) was used to update the fuzzy membership function, while ensuring that the power battery operates in a suitable range for a long time and reducing equivalent hydrogen consumption. The existing ADVISOR model was developed to establish a simulation model for the FCEV hybrid power system, and was conducted simulation experiments under two operating conditions: NEDC and CLTC-P. The results show that the charging speed of the IPIO-enhanced energy management strategy is more than twice as fast as the power-following strategy when the initial State of Charge (SoC) is low, enabling a faster transition to the optimal SoC range and prolonging battery lifespan. When the initial SoC is high, the equivalent hydrogen consumption of the IPIO-enhanced composite fuzzy energy management strategy is reduced by 11.8% and 9.09% compared with before under two driving cycles, significantly reducing hydrogen consumption and enhancing the economy of hydrogen fuel cell vehicles.
车辆工程 / 氢燃料电池汽车 / 能量管理策略 / 模糊逻辑 / 鸽群优化算法
vehicle engineering / fuel cell electric vehicles / energy management strategy / fuzzy logic / pigeon-inspired optimization
| [1] |
崔鹏飞, 沈英, 赵剀烨. 基于模糊控制的燃料电池汽车动力源能量管理[J]. 机械制造与自动化, 2020, 49(4): 177-179, 187. |
| [2] |
|
| [3] |
严陈希, 耿文冉, 黄明宇, 基于工况识别的混合动力汽车能量管理策略[J]. 机械设计与制造, 2022, 373(3): 24-29. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
张宇. 基于模糊规则学习的燃料电池混合动力汽车能量管理策略[D]. 长春: 吉林大学通信工程学院, 2021. |
| [10] |
|
| [11] |
周健豪, 顾诚, 刘军, 基于IGWO的燃料电池汽车模糊控制能量管理策略[J]. 重庆理工大学学报: 自然科学, 2021, 35(5): 33-41. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
霍梦真, 段海滨. 基于自适应变异的多目标鸽群优化的无人机目标搜索[J]. 控制理论与应用, 2020, 37(3): 584-591. |
| [16] |
|
| [17] |
夏小刚, 罗建婷, 王欣. 模糊变异算子的改进鸽群优化算法[J]. 河南科技大学学报: 自然科学版, 2022, 43(3): 39-44. |
| [18] |
|
国家自然科学基金面上项目(62173264)
先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金项目(XHD2020-003)
/
| 〈 |
|
〉 |