多向运动寄生载荷分量对称重传感输出的影响
Effect of parasitic load components with multi⁃directional motion on weight⁃sensing outputs
针对多向运动寄生载荷分量对称重传感输出影响很大的问题,提出了基于整体结构的变参数、多分量的输出影响评估方法,建立了“应变-总重-运动”瞬时特征的数学理论模型,并通过有限元仿真分析探讨了称重过程中常见的横向、纵向及绕轴旋转等运动特性,以及改变总重、旋转速度和角加速度等寄生载荷分量对输出的影响,通过实验测试验证理论模型及仿真分析规律的合理性。结果表明,横向运动寄生载荷分量对输出影响最小,最大偏差不大于0.001%FS(Full Scale);其次为纵向运动,最大偏差不大于0.015%FS;而绕轴旋转的运动寄生载荷分量对输出影响最大,最大偏差可达0.5%FS,且随着总重、旋转速度的变化而变化,该规律为称重传感结构的动态称重应用提供了精度补偿技术支撑和科学评价依据。
For the parasitic load component generated by multi-component superposition effect has a great influence on the weight-sensing output, a variable parameter and multi-component output effect assessment method based on the overall structure was proposed. Subsequently, a mathematical theoretical model of the instantaneous characteristics of "strain-total weight-motion" was established and analyzed by finite element simulation. In addition, exploring the characteristics of the multi-directional motions with transverse, longitudinal and rotating around an axis that are commonly seen in the weighing process, which include parasitic effects such as changing the total weight, rotating speed and angular acceleration, etc. Eventually, the reasonableness of the theoretical model and simulation analysis was verified through experimental tests. The results showed that the parasitic load component of transverse motion had the smallest influence on the output, and the maximum deviation was no more than 0.001%FS ( Full Scale); followed by longitudinal motion, and the maximum deviation was no more than 0.015%FS; and the parasitic load component of themotion of rotating around an axis had the largest influence on the output, and the maximum deviation can be up to 0.5%FS, and it was changed with the differences of the total weight and the rotating speed, which provided a technical support and accuracy compensation technology for dynamic weighing application of the weight-sensing structure. This law provides the technical support of accuracy compensation and scientific evaluation basis for the dynamic weighing application of weight-sensing structure.
测试计量技术及仪器 / 称重传感器 / 称重传感结构 / 多向运动 / 旋转 / 应变 / 载荷
measurement technology and instrument / load cell / weight-sensing structure / multi-directional motion / rotation / strain / load
| [1] |
朱建梅, 黄松和. 平行梁式称重传感器的动态仿真分析[J]. 机械, 2014, 41(11): 31-35, 76. |
| [2] |
|
| [3] |
张业兵. 运动速度对动态称重的影响[J]. 山东理工大学学报: 自然科学版, 2007, 21(2): 41-44, 47. |
| [4] |
|
| [5] |
尹继武, 龙姝明. 应变片倾斜角度对称重传感器偏载误差的影响[J]. 陕西理工学院学报: 自然科学版, 2014, 30(2): 19-23. |
| [6] |
|
| [7] |
郁有文, 常健, 程继红. 传感器原理及工程应用[M]. 4版. 西安: 西安电子科技大学出版社, 2014. |
| [8] |
赵思宏, 田春艳, 范惠林. 平行梁式称重传感器的有限元分析[J]. 光学精密工程, 2002, 10(2): 209-213. |
| [9] |
|
| [10] |
何兆湘, 黄兆祥, 王楠. 传感器原理与检测技术[M]. 武汉: 华中科技大学出版社, 2019. |
| [11] |
郑韬, 俞宁峰, 连昌伟. 应变计式力传感器对高速拉伸载荷振荡的改善[J]. 锻压技术, 2019, 44(8): 124-128, 136. |
| [12] |
|
| [13] |
|
| [14] |
干方建, 刘正士, 孔凡让, 传感器微分运动引起的机器人运动误差及其在线补偿[J]. 中国机械工程, 2005(23): 2069-2071. |
| [15] |
|
| [16] |
陈浩文, 李坚, 王兵, 等 . 机器人交互作业中六维力传感器重力补偿研究[J]. 组合机床与自动化加工技术, 2021(10): 47-51. |
| [17] |
Chen Hao-wen, Li Jian, Wang Bing, et al. Research on gravity compensation of six-axis force sensor in robot interactive operation[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(10):47-51. |
| [18] |
Li J, Guan Y, Chen H, et al. A high-bandwidth end-effector with active force control for robotic pol‐ishing[J]. IEEE Access, 2020, 8: 169122-169135. |
| [19] |
|
| [20] |
马涛, 马源, 黄晓明 . 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报: 工学版,2023, 53(7): 2067-2077. |
| [21] |
Ma Tao, Ma Yuan, Huang Xiao-ming. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7): 2067-2077. |
国家自然科学基金项目(52275096)
国家自然科学基金项目(52275523)
福厦泉国家自主创新示范区高端装备振噪检测与故障诊断协同创新平台项目
福建省科技重大专项项目(2022HZ024005)
/
| 〈 |
|
〉 |