热因素对线控穿刺机器人精度稳定性的影响
Influence of thermal factors on precision stability of wire-controlled puncture robot
针对变路径线控机器人微米级精度微创过程,进行温度因素对穿刺精度的影响规律研究。采用热分析和结构力学分析融合的方法,获得了关键穿刺针部件非均匀温度场和结构形变特性。结合正交实验分析方法,分析了瞬态和稳态温度变化对穿刺针部件变动的影响。结果表明:23~40 ℃的瞬态和稳态温度对微米级穿刺精度影响显著,两种温度条件的精度影响指标一致:工艺参数40 ℃-3.1 mm-3 mm/s的穿刺针热变形量最大为0.012 mm,对应的系统影响量达到0.1 mm左右;另外,基于临床穿刺工艺特点,通过3因素5水平的方差分析和回归分析,揭示了钛镍合金穿刺针热因素导致的非均匀热变形规律及影响穿刺精度的温度T大于穿刺针直径D和进针速度V的影响。
This article focuses on the micro invasive process of variable path wire controlled robots with micrometer precision, and studies the influence of temperature factors on puncture accuracy. By integrating thermal analysis and structural mechanics analysis, the non-uniform temperature field and structural deformation characteristics of key puncture needle components were obtained. By combining the orthogonal experimental analysis method, the influence of transient and steady-state temperature changes on the changes of puncture needle components was analyzed. The results show that the transient and steady-state temperatures from 23 ℃ to 40 ℃ have a significant impact on the precision of micrometer level puncture, and the accuracy impact indicators of the two temperature conditions are consistent: the maximum thermal deformation of the puncture needle with process parameters of 40 ℃-3.1 mm-3 mm/s is 0.012 mm, and the corresponding system impact reaches about 0.1 mm; In addition, based on the characteristics of clinical puncture technology, a 3-factor 5-level analysis of variance and regression analysis were conducted to reveal the non-uniform thermal deformation law caused by thermal factors of titanium nickel alloy puncture needles and the influence of temperature T on puncture accuracy, which is greater than the diameter D of the puncture needle and the injection speed V.
thermal effect / flexible wire-controlled puncture / precision minimally invasive / experiment analysis
| [1] |
段星光, 温浩, 何睿, 胸腹腔经皮穿刺机器人研究进展及关键技术分析[J]. 机器人, 2021, 43(5): 567-584. |
| [2] |
|
| [3] |
|
| [4] |
张帆, 何彦霖, 周康鹏, 穿刺手术柔性针路径规划技术现状和展望[J]. 电子测量与仪器学报, 2023, 37(6): 1-13. |
| [5] |
|
| [6] |
|
| [7] |
王乃堃, 骆敏舟, 陆丽娟. 穿刺机器人在微创外科手术中的应用进展[J]. 中国疼痛医学杂志, 2020, 26(5): 376-380. |
| [8] |
|
| [9] |
|
| [10] |
田伟. 我国医用机器人的研究现状及展望[J]. 骨科临床与研究杂志, 2018, 3(4): 193-197. |
| [11] |
|
| [12] |
李霞. 机器人辅助柔性针软组织穿刺系统研究[D].湘潭: 湘潭大学自动化与电子信息学院, 2016. |
| [13] |
|
| [14] |
王田苗, 郝雨飞, 杨兴帮, 软体机器人: 结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-12. |
| [15] |
|
| [16] |
霍本岩, 赵新刚, 韩建达, 基于可达性决策的柔性针穿刺控制方法[J]. 控制理论与应用, 2014, 31(10):1423-1424. |
| [17] |
|
| [18] |
雷静桃, 王洋, 程利亚, 基于复位路径包络误差和改进人工势力场法的复位机器人安全策略[J]. 机械工程学报,2020, 56(1): 9-19. |
| [19] |
|
| [20] |
张少华. 微创穿刺手术系统关键技术及穿刺定位精度实验研究[D].北京:北京理工大学机械与车辆学院, 2012. |
| [21] |
|
| [22] |
孙椰望, 刘宇行. 腰椎神经微创机器人柔性进针控制技术设计[J]. 颈腰痛杂志, 2021, 42(2): 274-278. |
| [23] |
|
| [24] |
殷谦, 尚建忠. 柔性波动鳍两栖机器人鳍面结构设计与运动仿真[J]. 工程热物理学报, 2021, 42(11):2954-2960. |
| [25] |
|
| [26] |
嵇建成, 王玉峰, 付建军, 康复助行机器人倾覆稳定性分析[J]. 工业控制计算机, 2024, 37(2): 70-72. |
| [27] |
|
| [28] |
刘泽华. 柔索驱动式主动柔性针穿刺机器人机构的设计及分析[D]. 哈尔滨: 哈尔滨理工大学机械动力工程学院, 2020. |
| [29] |
|
| [30] |
董欣勃, 魏操兵, 商晋. 冷压缩机温度场仿真及其冷却参数优化分析[J]. 工程热物理学报, 2020, 41(8): 1851-1860. |
| [31] |
|
| [32] |
王文涛. RV减速器热——结构耦合分析[D]. 北京:北方工业大学机械与材料工程学院,2016. |
| [33] |
|
| [34] |
董年鑫, 王希贵, 吴哲, 基于热固耦合的林区原油管道机器人壳体优化分析[J]. 森林工程, 2022, 38(1): 101-107. |
| [35] |
|
| [36] |
卢博文. 摆线针轮传动系统热分析[D]. 大连: 大连交通大学机械工程学院,2021. |
| [37] |
|
北京市自然科学基金项目(3232017)
中国科学院低温工程学重点实验室青年科技创新项目(CRYOQN202107)
国家智能机器人重大专项项目(2019YFB1310905)
/
| 〈 |
|
〉 |