This paper analyses the main research on quadruped robots,based on the motion and stability control requirements of quadrupedal robots, the key technologies of quadrupedal robots, such as mechanism design, kinematics and dynamics analysis, gait and foot trajectory planning, joint actuators, motion stability control, etc., are sorted out and summarised, and the logical relationship between each technology module is constructed, so as to systematically illustrate the motion and stability control architecture of quadrupedal robots, which can be used as reference for the researchers of foot-type robots.
VSA的研发目的就是模拟生物关节的变刚度能力,通常是在驱动器中加入非线性刚度弹性元件(如非线性弹簧),然后通过机械结构使受力改变驱动器整体的等效刚度,进而获得刚度可控的输出力。VSA技术的研发性能主要集中在高扭矩输出能力(High torque capacity)、宽范围的刚度变化区域(Wide range of stiffness)、快速刚度变化能力(Rapid stiffness regulation ability)。
③虚拟模型。另外一种常用的模型是 Pratt[24]提出的虚拟模型控制(Virtual model control,VMC)。VMC方法是通过建立机器人的虚拟模型(将机器人简化为对虚拟刚体高度、速度和姿态的独立控制),根据机器人期望的运动轨迹,计算出虚拟模型中的虚拟力,然后利用力等效关系将各个虚拟力换算到各个关节上,得到期望的关节力矩作为电机的控制输入,控制实际机器人能够跟踪虚拟模型的期望轨迹。
四足机器人是一个多输入多输出的间歇欠驱动系统,MPC控制策略思路是在欠驱动情况下保证机器人控制的状态在合理的变动范围内,从而在机器人可驱动状态下提前做好准备。全身运动控制(Whole body control,WBC)的主要思路是将一个复杂的机器人控制任务,分解成不同的子任务,并根据重要程度划分优先级,低优先级任务不应该影响高优先级任务的执行。在四足机器人行进过程中,以下4个控制任务,优先级依次递减:支撑腿落足点无打滑、机体质心跟随期望姿态和速度、机体质心跟随期望位置和速度、摆动腿足端跟随摆动轨迹。
HiroseS, KatoK. Study on quadruped walking robot in Tokyo Institute of Technology-past, present and future[C]∥IEEE International Conference on Robotics & Automation,San Fracisco,USA, 2000:414-419.
[2]
TeeT W, LowK H, NgH Y, et al. Mechatronics design and gait implementation of a quadruped legged robot[C]∥IEEE International Conference on Control, Hangzhou, China, 2003: 826-832.
[3]
HuangY, MeijerO G, LinJ, et al. The effects of stride length and stride frequency on trunk coordination in human walking[J]. Gait & Posture, 2010, 31(4): 444-449.
[4]
McgheeR B, FrankA A. On the stability properties of quadruped creeping gaits[J]. Mathematical Bioences, 1968, 3(1): 331-351.
[5]
MessuriD, KleinC A. Automatic body regulation for maintaining stability of a legged vehicle during rough-terrian locomotion[J]. IEEE Journal of Robotics & Automation, 1985, 1(3): 132-141.
[6]
HiroseS, TsukagoshiH, YonedaK. Normalized energy stability margin and its contour of walking vehicles on rough terrain[C]∥The IEEE International Conference on Robotics & Automation,Seoul, South Korea, 2001: 181-186.
[7]
PackD J, KangH. An omnidirectional gait control using a graph search method for a quadruped walking robot[C]∥The IEEE International Conference on Robotics & Automation, Nogoya, Japan,1995: 988-993.
WangXin-jie, LiPei-gen, ChenXue-dong, et al. Research on joint posture and stability of quadruped walking robot[J]. China Mechanical Engineering, 2005, 16(17): 1561-1566.
[10]
伍科布拉托维奇. 步行机器人和动力型假肢[M]. 北京: 科学出版社, 1983.
[11]
LinB S, SongS M. Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine[C]∥The IEEE International Conference on Robotics & Automation, Atlanta, USA, 2001: 367-373
[12]
WonM, KangT H, ChungW K. Gait planning for quadruped robot based on dynamic stability: landing accordance ratio[J]. Intelligent Service Robotics, 2009, 2(2): 105-112.
[13]
HoytD F, TaylorC R. Gait and the energetics of locomotion in horses[J]. Nature, 1981, 292: 239-240.
[14]
AlexanderR M. The maximum forces exerted by animals[J]. Journal of Experimental Biology, 1985, 115: 231-238.
[15]
PrattG A, WilliamsonM M. Series elastic actuators[C]∥IEEE International Conference on Intelligent Robots & Systems, Pittsburgh, USA, 1995: 399-406.
[16]
AuS K, WeberJ, HerrH. Powered ankle-foot prosthesis improves walking metabolic economy[J]. IEEE Transactions on Robotics, 2009, 25(1): 51-66.
[17]
WolfS, HirzingerG. A new variable stiffness design: matching requirements of the next robot generation[C]∥IEEE International Conference on Robotics and Automation, Zhangjiajie, China, 2008: 1741-1746.
[18]
PaulR P. Robot Manipulators: Mathematics, Programming and Control[M]. Cambridge: The MIT Press, 1981.
[19]
McgheeR B, IswandhiG I. Adaptive locomotion of a multilegged robot over rough terrain[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(4): 176-182.
[20]
FukuokaY, KimuraH, HadaY, et al. Adaptive dynamic walking of a quadruped robot on irregular terrain by using neural system model[C]∥IEEE/RSJ International Conference on Intelligent Robots & Systems, Takamatsu, Japan, 2000: 979-984.
[21]
BuehlerM, PlayterR, RaibertM. Robots step outside[C]∥International Symposium on Adaptive Motion of Animals and Machines (AMAM),Ilmenau, Germany, 2005: 1-4.
[22]
RaibertM, BlankespoorK, NelsonG, et al. BigDog, the rough-terrain quadruped robot[C]∥World Congress,Seoul, South Korea, 2008: 10822-10825.
[23]
AlbiezJ, KerscherT, GrimmingerF, et al. PANTER-prototype for a fast-running quadruped robot with pneumatic muscles[C]∥Proccedings of the 6th International Conference on Climbing and Walking Robots (CLAWAR), Moscow, Russia, 2003: 107411282.
[24]
MasudaK, ShimizuM, NariokaK, et al. 1P1-O15 realization of the dynamic locomotion with a quadruped robot based on the musculoskeletal system driven by pneumatic artificial muscles(biorobotics)[J]. The Proceedings of JSME annual Conference on Robotics and Mechatronics, 2011, 4: 1-4.
[25]
PrattJ E. Virtual Model Control of a Biped Walking Robot[M]. Cambridge: Massachusetts Institute of Technology, 1995.