To address the issues of strong subjectivity and low accuracy in traditional methods for predicting innovative talents in higher education, this paper proposes an intelligent predictive model that combines a Particle Swarm Optimization algorithm, enhanced with an Information-Guided Communication Search strategy, with a Kernel Extreme Learning Machine. This model aims to more scientifically and objectively identify and select innovative talents by utilizing the improved Particle Swarm Optimization algorithm to enhance population diversity and global search capabilities, thereby improving the classification performance of the Kernel Extreme Learning Machine. To validate its effectiveness, experiments were conducted on a university innovation talent dataset using 10-fold cross-validation. The results demonstrate that the proposed model outperforms several comparative models in key evaluation metrics, including classification accuracy (86.05%), sensitivity (89.74%), specificity (83.24%), and Matthews correlation coefficient (72.42%). These findings confirm the significant advantages of the proposed model in predicting innovative university talents, offering a new technical approach for the scientific selection and cultivation of talent with promising application prospects.
粒子群优化算法是一种基于鸟类群体觅食行为设计的群智能算法,PSO因其计算效率高、收敛速度快、实现简便而被广泛应用。PSO的基本思想是通过模拟一群粒子在搜索空间中的飞行来寻找最优解。每个粒子代表一个潜在解,具有位置和速度两个属性。位置表示当前的解,速度决定了粒子在搜索空间中的移动方向和距离。粒子在飞行过程中根据自己和群体的经验不断调整其速度,从而逐步逼近最优解。因此,其搜索过程不仅受个体经验的影响,还受到全体粒子经验的集体影响,这种集体智能机制使得PSO能够有效避免陷入局部最优解,具有较强的全局搜索能力。尽管PSO在许多优化问题中表现出色,但是其本身仍存在一些不足。比如,由于粒子在搜索空间中逐步靠近局部最优解,一旦粒子群集中在一个局部极值附近,算法可能难以跳出该区域,从而无法找到全局最优解。鉴于此,本文提出了基于信息引导交流搜索策略的改进PSO(PSO based on information-guided communication search strategy,ICSPSO)。该策略通过促进种群个体间的信息交流,从而提高种群丰富度,进而提高算法的寻优能力。随后,还提出了一种基于核极限学习机(Kernel extreme learning machine,KELM)[20]和改进粒子群优化算法的特征选择方法(bICSPSO-KELM)以提高高校创新人才的预测准确率。通过与同类型和经典分类器在数据集上的实验结果表明,本文提出的bICSPSO-KELM模型在马修斯相关系数(MCC)、分类准确率、灵敏度和特异性等4个指标上可以获得更佳的结果。
ShiQiu-heng, LiRui. Value logic, key elements and path selection of top innovative talents training in universities[J]. Distance Education in China, 2024, 44(1): 15-24.
LiRun-ya, ZhangChao, ZhangKe, et al. A study on the system composition and performance of college students' innovation and entrepreneurship ability[J]. Educational Theory and Practice,2024,44(18):10-15.
[6]
GaoH W.Innovation and development of ideological and political education in colleges and universities in the network era[J]. International Journal of Electrical Engineering& Education,2021,60(Sup.2): 489-499.
LiLi-guo, LiuZhen-tian, ChenEn-lun, et al. Writing: multi-dimensional thinking on sustainable development of universities [J]. Modern University Education,2023,39(6): 41-59.
XuYu-cheng, WangBo, ZhuPing. The times value, realistic dilemma and solutions of talent training in enabling vocational education by integrating science and education[J]. Educational Academic Monthly, 2023(9): 58-66.
[11]
LiuY. Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm[J].Frontiers in Psychology,2022,13: 968023.
ZhouYi, ChenYuan-Yue, FengHao-yue. Research on the role of interdisciplinary interaction in promoting the cultivation of top innovative talents: empirical evidence from the college system of S University[J]. Journal of Education Science, Hunan Normal University, 2024, 23(1): 33-43.
[14]
SarkerI H.Machine learning:algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2(3): No.160.
[15]
MishraD K, ShindeV.6 A review of global optimization problems using meta-heuristic algorithm[M]∥Aditya K, Ashish K, Nhu Gia N, et al. Nature-Inspired Optimization Algorithms.Berlin,Boston;De Gruyter, 2021: 87-106.
[16]
StornR, PriceK. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997, 11(4): 341-359.
[17]
KennedyJ, EberhartR.Particle swarm optimization[C]∥Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, 1995:488968.
MirjaliliS, MirjaliliS M, LewisA. Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69: 46-61.
[20]
LianJ, HuiG, MaL, et al.Parrot optimizer: algorithm and applications to medical problems[J]. Computers in Biology and Medicine, 2024, 172: 108064.
[21]
ChauhanS, VashishthaG, AbualigahL, et al.Boosting salp swarm algorithm by opposition-based learning concept and sine cosine algorithm for engineering design problems[J].Soft Computing, 2023, 27(24):18775-18802.
[22]
GaoR, TaoJ, ZhangJ,et al.NSGA-Ⅲ-SD based fuzzy energy management system optimization for lithium battery/supercapacitor HEV[J].Applied Soft Computing, 2023, 142: 110280.
[23]
DongR, SunL, MaL, et al.Boosting kernel search optimizer with slime mould foraging behavior for combined economic emission dispatch problems[J]. Journal of Bionic Engineering, 2023, 20(6): 2863-2895.
[24]
PanX, ZhangG, LinA,et al.An evaluation model for children's foot& ankle deformity severity using sparse multi-objective feature selection algorithm[J]. Computers in Biology and Medicine, 2022, 151: 106229.
[25]
HuangG B, ZhouH, DingX,et al. Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics,Part B(Cybernetics), 2012, 42(2): 513-529.
[26]
HuangG B, ZhuQ Y, SiewC K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.