CFRP加固承受主管轴力作用X形管节点轴压承载力试验研究
Experimental Study on Axial Compressive Bearing Capacity of Tubular X-joint Strengthened with CFRP under Preloading on Chord
为研究主管承载下碳纤维增强聚合物(CFRP)加固X形管节点在支管轴压作用下的承载力,本文完成了4个X形管节点的轴压加载试验。在X形管节点试验过程中,实测了轴压承载力、位移以及相贯区域应变数据,研究了试件的失效模式、轴压承载力及应变发展规律。通过有限元软件ABAQUS建立了主管承载下CFRP加固X形管节点的有限元模型,将数值模拟结果与试验测试结果进行对比,验证了建立的有限元模型的准确性。此外,本文还研究了初始承载率、支管与主管直径比、主管径厚比和CFRP缠绕层数对X形管节点承载力的影响。试验结果表明采用CFRP加固X形管节点可以有效地提高试件的轴压承载力,随着CFRP加固层数的增加,管节点轴压承载力显著提升。相较于主管未承载的CFRP加固X形管节点,主管初始承载率为28%的CFRP加固X形管节点的轴压承载力仅下降3.2%,且主管承载不会改变CFRP加固X形管节点的失效模式。有限元参数结果表明随着初始承载率的增加,管节点承载力均降低。CFRP加固能够补偿主管承载对管节点承载力降低的影响,缠绕CFRP层数越多,承受主管轴力作用的X形管节点承载力下降越少。
To study the axial compressive bearing capacity of tubular X-joint strengthened with carbon fiber reinforced polymer (CFRP) under preloading on chord, four tubular X-joints were tested under axial compression. The axial compressive bearing capacity, displacement and strain of the chord/brace intersection during the experiment were measured, and the failure modes, axial compressive bearing capacity, and strain development of the specimens were analyzed. A finite element (FE) model of tubular X-joint strengthened with CFRP under preloading on chord was established through finite element software ABAQUS, and the numerical simulation results were compared with the experimental results to verify the accuracy of the established FE model. Effects of initial loading percentages, diameter ratio of brace to chord, chord diameter-to-thickness ratio and number of CFRP layers on the bearing capacity of tubular X-joints were investigated. The experimental results show that CFRP sheets can effectively improve the axial compressive bearing capacity of tubular X-joint, and this enhancement becomes more significant as the number of CFRP layers increases. Compared with tubular X-joint strengthened with CFRP without preloading on chord, applying an initial loading percentage of 28% on the chord results in 3.2% reduction on the axial compressive bearing capacity of the tubular X-joint. The preloading on the chord does not change the failure mode of tubular X-joint strengthened with CFRP. The parametric analyses from finite element method indicate that the bearing capacity of strengthened tubular X-joints reduces with the increase of preloading percentage. CFRP strengthening can compensate for the reduction of bearing capacity of tubular X-joints subjected to initial axial compression. With more CFRP layers, the decrease of the bearing capacity of preloaded tubular X-joints becomes less.
X形管节点 / 主管承载 / CFRP / 失效模式 / 轴压承载力
tubular X-joint / preloading on chord / CFRP / failure mode / axial compressive bearing capacity
| [1] |
LESANI M,BAHAARI M R,SHOKRIEH M M. Experimental investigation of FRP-strengthened tubular T-joints under axial compressive loads[J]. Construction and Building Materials,2014,53:243-252. DOI:10.1016/j.conbuildmat.2013.11.097. |
| [2] |
HOSSEINI A S,BAHAARI M R,LESANI M,et al. Static load-bearing capacity formulation for steel tubular T/Y-joints strengthened with GFRP and CFRP[J]. Composite Structures,2021,268:113950. DOI:10.1016/j.compstruct.2021.113950. |
| [3] |
FU Y G,TONG L W,HE L,et al. Experimental and numerical investigation on behavior of CFRP-strengthened circular hollow section gap K-joints[J]. Thin-Walled Structures,2016,102:80-97. DOI:10.1016/j.tws.2016.01.020. |
| [4] |
史曼瑜,邵永波,杨冬平. 碳纤维复合材料(CFRP)加固含腐蚀缺陷的TT型管节点静力性能研究[J]. 应用力学学报,2020,37(3):959-968,1383-1384. DOI:10.11776/cjam. 37.03.B007. |
| [5] |
SHI Manyu,SHAO Yongbo,YANG Dongping. Static performance of CFRP-strengthened tubular TT-joints with corrosion defects[J]. Chinese Journal of Applied Mechanics,2020,37(3):959-968,1383-1384. DOI:10.11776/cjam.37.03.B007.(in Chinese) |
| [6] |
宋纪贵,邵永波,杨冬平. 碳纤维增强聚合物加固含腐蚀缺陷的YY型管节点静力性能分析[J]. 中国海上油气,2020,32(2):171-179. DOI:10.11935/j.issn.1673-1506. 2020. 02.021. |
| [7] |
SONG Jigui,SHAO Yongbo,YANG Dongping. Static behavior analysis of using carbon fiber reinforced polymer to enhance the YY-type tubular joints with corrosion defects[J]. China Offshore Oil and Gas,2020,32(2):171-179. DOI:10.11935/j.issn.1673-1506.2020.02.021.(in Chinese) |
| [8] |
NASSIRAEI H,REZADOOST P. Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load[J]. Engineering Structures,2021,236:112041. DOI:10.1016/j.engstruct.2021.112041. |
| [9] |
中华人民共和国工业和信息化部. 纤维增强复合材料加固修复钢结构技术规程:YB/T 4558—2016[S]. 北京:冶金工业出版社,2016. |
| [10] |
Ministry of Industry and Information Technology of the People′s Republic of China. Technical Specification for Strengthening Steel Structures with Fiber Reinforced Polymer:YB/T 4558—2016[S]. Beijing:Metallurgical Industry Press,2016. (in Chinese) |
| [11] |
WEI C,SHAO Y B,CHEN C,et al. Axial compressive strength of preloaded CHS stubs strengthened by CFRP[J]. Marine Structures,2022,84:103242. DOI:10.1016/j.marstruc.2022.103242. |
| [12] |
WEI C,SHAO Y B,HASSANEIN M F,et al. Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer[J]. Steel and Composite Structures,2023,47(4):455-466. DOI:10.12989/scs.2023.47.4.455. |
| [13] |
XIONG C N,SHAO Y B,TONG L W,et al. Static strength of CFRP-strengthened preloaded circular concrete-filled steel tube stub columns,Part I:Experimental test[J]. Thin-Walled Structures,2023,184:110546. DOI:10.1016/j.tws.2023.110546. |
| [14] |
XIONG C N,SHAO Y B,TONG L W,et al. Static strength of CFRP-strengthened preloaded circular concrete-filled steel tube stub column columns-Part II:Theoretical and numerical analysis[J]. Thin-Walled Structures,2023,184:110547. DOI:10.1016/j.tws.2023.110547. |
| [15] |
毕欣,邵永波,熊川楠, CFRP加固承载状态下含腐蚀圆钢管混凝土轴压短柱力学性能研究[J]. 建筑钢结构进展,2022,24(12):55-65. DOI:10.13969/j.cnki.cn31-1893. 2022.12.006. |
| [16] |
BI Xin,SHAO Yongbo,XIONG Chuannan,et al. Mechanical properties of CFRP-strengthened concrete-filled circular steel tubular stubs with corrosion under initial axial loading[J]. Progress in Steel Building Structures,2022,24(12):55-65. DOI:10.13969/j.cnki.cn31-1893. 2022. 12.006.(in Chinese) |
| [17] |
常鸿飞,李照伟,任腾龙, 负载下环口板焊接加固T形钢管相贯节点试验研究[J]. 建筑结构学报,2023,44(6):212-221,234. DOI:10.14006/j.jzjgxb.2022.0092. |
| [18] |
CHANG Hongfei,LI Zhaowei,REN Tenglong,et al. Experimental study on compressive behavior of reinforcing CHS T-joints with welding collar plates when in service[J]. Journal of Building Structures,2023,44(6):212-221,234. DOI:10.14006/j.jzjgxb.2022.0092.(in Chinese) |
| [19] |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 无缝钢管尺寸、外形、重量及允许偏差:GB/T 17395—2008[S]. 北京:中国标准出版社,2008. |
| [20] |
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People′s Republic of China. Dimensions Shapes Masses and Tolerances of Seamless Steel Tubes:GB/T 17395—2008[S]. Beijing:Standards Press of China,2008. (in Chinese) |
| [21] |
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2017. |
| [22] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Standard for Design of Steel Structures:GB 50017—2017[S]. Beijing:China Architecture & Building Press,2017. (in Chinese) |
| [23] |
NASSIRAEI H,ZHU L,LOTFOLLAHI-YAGHIN M A,et al. Static capacity of tubular X-joints reinforced with collar plate subjected to brace compression[J]. Thin-Walled Structures,2017,119:256-265. DOI:10.1016/j.tws. 2017. 06.012. |
| [24] |
American Society for Testing and Materials. Standard Test Methods and Definitions for Mechanical Testing of Steel Products:ASTM A370-2017[S]. Portland:American Society for Testing and Materials,2017. |
| [25] |
傅宇光,童乐为,周海明. 一种采用纤维增强复合材料加固金属管节点的方法:CN201510174183.3[P]. 2017-11-10. |
| [26] |
FU Yuguang,TONG Lewei,ZHOU Haiming. Method for reinforcing metal tube joint by means of fiber reinforced polymers (FRPs):CN201510174183.3[P]. 2017-11-10.(in Chinese) |
| [27] |
王东锋,邵永波,欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学,2021,38(10):188-199. DOI:10.6052/j.issn.1000-4750. 2020. 10.0732. |
| [28] |
WANG Dongfeng,SHAO Yongbo,OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular cfrp-steel tube stubs[J]. Engineering Mechanics,2021,38(10):188-199. DOI:10.6052/j.issn.1000-4750.2020.10.0732.(in Chinese) |
| [29] |
CHEN Y,FENG R,WANG C Y. Tests of steel and composite CHS X-joints with curved chord under axial compression[J]. Engineering Structures,2015,99:423-438. DOI:10.1016/j.engstruct.2015.05.011. |
| [30] |
HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. DOI:10.1115/1.3153664. |
| [31] |
VALDIVIA I,CANALES C,TUNINETTI V,et al. Numerical prediction of failure in unidirectional fiber reinforced composite[J]. International Journal of Applied Mechanics,2021,13(6):2150073. DOI:10.1142/s1758825121500733. |
| [32] |
SHIN D K,KIM H C,LEE J J. Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three point bending[J]. Composites Part B:Engineering,2014,56:397-407. DOI:10.1016/j.compositesb.2013.08.030. |
| [33] |
宋生志,魏建军,陈成. 碳纤维布(CFRP)加固T形圆钢管节点的静力性能研究[J]. 建筑钢结构进展,2015,17(2):57-64. DOI:10.13969/j.cnki.cn31-1893.2015.02.009. |
| [34] |
SONG Shengzhi,WEI Jianjun,CHEN Cheng. A study on the performance of tubular T-joints strengthened with CFRP subjected to monotonic loading[J]. Progress in Steel Building Structures,2015,17(2):57-64. DOI:10.13969/j.cnki.cn31-1893.2015.02.009.(in Chinese) |
| [35] |
王卫永,张亿发. 高温下高强钢连接的高强螺栓预紧力研究[J]. 建筑钢结构进展,2023,25(6):51-57,74. DOI:10.13969/j.cnki.cn31-1893.2023.06.006. |
| [36] |
WANG Weiyong,ZHANG Yifa. A study on the preload in high-strength bolts for high-strength steel connection at elevated temperatures[J]. Progress in Steel Building Structures,2023,25(6):51-57,74. DOI:10.13969/j.cnki.cn31-1893.2023.06.006.(in Chinese) |
四川省青年科技创新研究团队项目(2019JDTD0017)
/
| 〈 |
|
〉 |